Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Thay x = 2 vào phương trình,ta được: \(16+4m-26+n=0\Leftrightarrow4m+n=10\)(1)
*Thay x = 3 vào phương trình,ta được: \(54+9m-39+n=0\Leftrightarrow9m+n=-15\)(2)
Lấy (2) - (1), ta được:\(5m=-25\Leftrightarrow m=-5\)
\(\Rightarrow n=10+4.5=30\)
Ta được phương trình \(2x^3-5x^2-13x+30=0\)
\(\Rightarrow2x^3-10x^2+5x^2-25x+12x+30=0\)
\(\Rightarrow\left(2x^3-10x^2+12x\right)+\left(5x^2-25x+30\right)=0\)
\(\Rightarrow2x\left(x^2-5x+6\right)+5\left(x^2-5x+6\right)=0\)
\(\Rightarrow\left(2x+5\right)\left(x^2-5x+6\right)=0\)
\(\Rightarrow\left(2x+5\right)\left(x-2\right)\left(x-3\right)=0\)
Vậy nghiệm còn lại của phương trình là \(\frac{-5}{2}\)
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)
Thay x = 2 vào phương trình, ta được:
\(6.2^3-7.2^2-16.2+m=0\)
\(\Leftrightarrow6.8-7.4-32+m=0\)
\(\Leftrightarrow48-28-32+m=0\)
\(\Leftrightarrow20-32+m=0\)
\(\Leftrightarrow-12+m=0\)
\(\Leftrightarrow m=12\)
Vậy m = 12 thì pt có 1 nghiệm bằng 12.
Lúc đó phương trình trở thành \(6x^3-7x^2-16x+12=0\)
\(\Leftrightarrow6x^3-3x^2-4x^2-18x+2x+12=0\)
\(\Leftrightarrow\left(6x^3-3x^2-18x\right)-\left(4x^2-2x-12\right)=0\)
\(\Leftrightarrow3x\left(2x^2-x-6\right)-2\left(2x^2-x-6\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x^2-x-6\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)\left(2x+3\right)=0\)
Vậy các nghiệm còn lại là \(\frac{2}{3};\frac{-3}{2}\)