Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{-\frac{1}{2};0;2\right\}\)
\(B=\left\{2;3;4;5\right\}\)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
Bài 1:
a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.
Mệnh đề A sai.
b)
\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.
c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.
d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)
\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)
\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$
\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)
Mệnh đề đúng.
Ta có:
(2x - x2)(2x2 - 3x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-x^2=0\\2x^2-3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=2\\x=\frac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\) A = \(\left\{\frac{-1}{2};0;2\right\}\)
Và B = \(\left\{2;3;4;5\right\}\)
Vậy \(A\cap B\) = \(\left\{2\right\}\)
a) Tập xác định của f(x) :
A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}
- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0
Theo định lí dấu của tam thức:
x2 + 3x + 4 ≥ 0 ∀x ∈R
-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5
-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]
b) A/B = [3, 4]
R\(A\B) = (-∞, 3) ∪ (4, +∞)
a) \(A=\left\{x\in R|x-\sqrt[]{3-2x}=0\right\}\)
\(B=\left\{x\in R|x^2+2x-3=0\right\}\)
\(\)\(x-\sqrt[]{3-2x}=0\)
\(\Leftrightarrow\sqrt[]{3-2x}=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3-2x=x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)
\(\Rightarrow A=\left\{1\right\}\)
\(x^2+2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
\(\Rightarrow B=\left\{-3;1\right\}\)
Vậy \(A\subset B\)
b) \(A=\left\{x\in N|x^2-2x+1>10\right\}\)
\(B=\left\{x\in N|x>=2\right\}\)
\(x^2-2x+1>10\)
\(\Leftrightarrow\left(x-1\right)^2>\left(\sqrt[]{10}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< -\sqrt[]{10}\\x-1>\sqrt[]{10}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 1-\sqrt[]{10}\\x>1+\sqrt[]{10}\end{matrix}\right.\)
\(\Rightarrow A=(-\infty;1-\sqrt[]{10})\cup(1+\sqrt[]{10};+\infty)\)
\(B=[2;+\infty)\)
mà \(1-\sqrt[]{10}< 2< 1+\sqrt[]{10}\)
Vậy 2 tập hợp không có quan hệ gì giữa nhau