K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

a) \(A=\left\{x\in R|x-\sqrt[]{3-2x}=0\right\}\)

\(B=\left\{x\in R|x^2+2x-3=0\right\}\)

\(\)\(x-\sqrt[]{3-2x}=0\)

\(\Leftrightarrow\sqrt[]{3-2x}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3-2x=x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)

\(\Rightarrow A=\left\{1\right\}\)

\(x^2+2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

\(\Rightarrow B=\left\{-3;1\right\}\)

Vậy \(A\subset B\)

 

16 tháng 9 2023

b) \(A=\left\{x\in N|x^2-2x+1>10\right\}\)

\(B=\left\{x\in N|x>=2\right\}\)

\(x^2-2x+1>10\)

\(\Leftrightarrow\left(x-1\right)^2>\left(\sqrt[]{10}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< -\sqrt[]{10}\\x-1>\sqrt[]{10}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 1-\sqrt[]{10}\\x>1+\sqrt[]{10}\end{matrix}\right.\)

\(\Rightarrow A=(-\infty;1-\sqrt[]{10})\cup(1+\sqrt[]{10};+\infty)\)

\(B=[2;+\infty)\)

mà \(1-\sqrt[]{10}< 2< 1+\sqrt[]{10}\)

Vậy 2 tập hợp không có quan hệ gì giữa nhau

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)

Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)

Từ đó \(A \cap B = \{  - \sqrt 2 \} .\)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y =  - x + 5\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y =  - x + 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 =  - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)

Vậy \(A \cap B = \{ (2;3)\} .\)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó \(A \cap B\) là tập hợp các hình vuông.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A \cup B = \{ a;b;c;d;e;i;u\} \), \(A \cap B = \{ a;e\} \)

b) Phương trình \({x^2} + 2x - 3 = 0\) có hai nghiệm là 1 và -3, nên \(A = \{ 1; - 3\} \)

Phương trình \(B = \{ x \in \mathbb{R}|\;|x|\; = 1\} \) có hai nghiệm là 1 và -1, nên \(B = \{ 1; - 1\} \)

Từ đó, \(A \cup B = \{ 1; - 1; - 3\} \), \(A \cap B = \{ 1\} .\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

(2x-x^2)(2x^3-3x-2)=0

=>x(2-x)(2x^3-3x-2)=0

=>x=0 hoặc 2-x=0 hoặc 2x^3-3x-2=0

=>\(x\in\left\{0;2;1,48\right\}\)

=>\(A=\left\{0;2;1,48\right\}\)

3<n^2<30

mà \(n\in Z^+\)

nên \(n\in\left\{2;3;4;5\right\}\)

=>B={2;3;4;5}

=>A giao B={2}

=>Chọn B

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

15 tháng 9 2023

ch ữ đẹp quá :)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”

b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”

 c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x =  - \frac{1}{2} \notin \mathbb{Z}\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”

a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}

=>x^2+x-6=0 hoặc 3x^2-10x+8=0

=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0

=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)

=>A={-3;2;4/3}

B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}

=>x^2-2x-2=0 hoặc 2x^2-7x+6=0

=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)

=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)

A={-3;2;4/3}

b: \(B\subset X;X\subset A\)

=>\(B\subset A\)(vô lý)

Vậy: KHông có tập hợp X thỏa mãn đề bài

15 tháng 9 2023

`a)(2x^2-5x+3)(x^2-4x+3)=0`

`<=>[(2x^2-5x+3=0),(x^2-4x+3=0):}<=>[(x=3/2),(x=1),(x=3):}`

  `=>A={3/2;1;3}`

`b)(x^2-10x+21)(x^3-x)=0`

`<=>[(x^2-10x+21=0),(x^3-x=0):}<=>[(x=7),(x=3),(x=0),(x=+-1):}`

   `=>B={0;+-1;3;7}`

`c)(6x^2-7x+1)(x^2-5x+6)=0`

`<=>[(6x^2-7x+1=0),(x^2-5x+6=0):}<=>[(x=1),(x=1/6),(x=2),(x=3):}`

    `=>C={1;1/6;2;3}`

`d)2x^2-5x+3=0<=>[(x=1),(x=3/2):}`   Mà `x in Z`

    `=>D={1}`

`e){(x+3 < 4+2x),(5x-3 < 4x-1):}<=>{(x > -1),(x < 2):}<=>-1 < x < 2`

    Mà `x in N`

   `=>E={0;1}`

`f)|x+2| <= 1<=>-1 <= x+2 <= 1<=>-3 <= x <= -1`

      Mà `x in Z`

  `=>F={-3;-2;-1}`

`g)x < 5`  Mà `x in N`

   `=>G={0;1;2;3;4}`

`h)x^2+x+3=0` (Vô nghiệm)

   `=>H=\emptyset`.