Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)
⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)
+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4
Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.
Phương trình có hai nghiệm b = 12 hoặc b = –3.
Với b = 12 thì a = 16.
Với b = –3 thì a = 1.
Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
a) Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:
\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b = - 1\)
Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm B(2; 4) nên:
\(a{.2^2} + 2b + 1 = 4 \Leftrightarrow 4a + 2b = 3\)
Từ 2 phương trình trên, ta có \(a = \frac{5}{2};b = \frac{{ - 7}}{2}\)
=> Hàm số cần tìm là \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\)
b) Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:
\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b = - 1\)
Đồ thị hàm số \(y = a{x^2} + bx + 1\) có trục đối xứng x=1
\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow - b = 2a \Leftrightarrow 2a + b = 0\)
Từ 2 phương trình trên, ta có \(a = 1;b = - 2\)
=> Hàm số cần tìm là \(y = {x^2} - 2x + 1\)
c) Đồ thị hàm số \(y = a{x^2} + bx + 1\) có đỉnh \(I(1;2)\) nên:
\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow - b = 2a \Leftrightarrow 2a + b = 0\)
\(a{.1^2} + b.1 + 1 = 2 \Leftrightarrow a + b = 1\)
Từ 2 phương trình trên, ta có \(a = - 1;b = 2\)
=> Hàm số cần tìm là \(y = - {x^2} + 2x + 1\)
d) Đồ thị hàm số \(y = a{x^2} + bx + 1\) đi qua điểm C(-1; 1) nên:
\(a.{( - 1)^2} + b.( - 1) + 1 = 1 \Leftrightarrow a - b = 0 \Leftrightarrow a = b\)
Đồ thị hàm số \(y = a{x^2} + bx + 1\) có tung độ đỉnh là -0,25 nên:
\(\frac{{ - \Delta }}{{4a}} = - 0,25 \Leftrightarrow - \frac{{{b^2} - 4.a.1}}{{4a}} = - 0,25 \Leftrightarrow {b^2} - 4a = a \Leftrightarrow {b^2} = 5a\)
Thay a=b ta có:
\({b^2} = 5b \Leftrightarrow b=0\) hoặc \(b=5\)
Vì \(a \ne 0\) nên \(a=b=5\)
=> Hàm số cần tìm là \(y = 5{x^2} + 5x + 1\)
Từ điều kiện đề bài: (hiển nhiên a khác 0):
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=1\\4a+2b+c=0\\4a-2b+c=-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4ac-b^2=4a\\4a+2b+c=0\\4b=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\4ac-4=4a\\4a+4+c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\ac-1=a\\c=-4a-4\end{matrix}\right.\)
\(\Rightarrow a\left(-4a-4\right)-1=a\)
\(\Rightarrow4a^2+5a+1=0\) \(\Rightarrow\left[{}\begin{matrix}a=-1\Rightarrow c=0\\a=-\dfrac{1}{4}\Rightarrow c=-3\end{matrix}\right.\)
Vậy có 2 pt (P): \(\left[{}\begin{matrix}y=-x^2+2x\\y=-\dfrac{1}{4}x^2+2x-3\end{matrix}\right.\)
Tìm Parabol (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Lời giải:
ĐK: $a\neq 0$
Gọi đỉnh của parabol là $I$.
Ta có:
Hoành độ đỉnh: $x_I=\frac{-b}{2a}$
Tung độ đỉnh: $y_I=ax_I^2+bx_I+1=1-\frac{b^2}{4a}=0$
$\Rightarrow b^2=4a(*)$
Mặt khác parabol đi qua điểm $N(1,4)$ nên:
$y_N=ax_N^2+bx_N+1$
$\Leftrightarrow 4=a+b+1(**)$
Từ $(*); (**)\Rightarrow b^2=4(3-b)\Rightarrow b=2$ hoặc $b=-6$
Nếu $b=2\rightarrow a=1$. Parabol $y=x^2+2x+1$
Nếu $b=-6\rightarrow a=9$. Parabol $y=9x^2-6x+1$