K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

9 tháng 2 2023

a)

\(x=-2\) là nghiệm của phương trình

\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)

\(\Leftrightarrow4+4\left(m-1\right)-3=0\)

\(\Leftrightarrow4\left(m-1\right)=-1\)

\(\Leftrightarrow m-1=-\dfrac{1}{4}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

\(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)

\(\Leftrightarrow2x^2+x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

b)

\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

Có:

 \(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)

\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=-3\left[4\left(m-1\right)^2+6\right]+15\)

\(=-12\left(m-1\right)^2-3\)

Mà \(-12\left(m-1\right)^2\le0\)

\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)

\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).

 

9 tháng 2 2023

`a)` Thay `x=-2` vào ptr có:

   `(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`

Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`

             `<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`

`b)` Ptr có nghiệm `<=>\Delta' >= 0`

            `<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`

Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`

`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`

`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`

`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`

`<=>Q=-3(2m-2)^2-18+15`

`<=>Q=-3(2m-2)^2-3`

Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`

  `=>Q <= -3 AA m`

Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`

Vậy GTLN của `Q` là `-3` khi `m=1`

5 tháng 3 2017

giải \(\Delta\)ra ngay mà bạn?

NV
1 tháng 4 2021

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

10 tháng 4 2021

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

b: Thay x=-5 vào pt, ta được:

\(m+25+65=0\)

hay m=-90

Theo đề, ta có: \(x_1+x_2=13\)

nên \(x_2=18\)

c: Thay x=-3 vào pt, ta được:

\(18+3\left(m+4\right)+m=0\)

=>4m+30=0

hay m=-15/2

Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)

hay \(x_2=-1.25\)

a: Thay x=-1 vào (6), ta được:

1+2m+m+6=0

=>3m+7=0

=>m=-7/3

x1+x2=-2m/1=-2*7/3=-14/3

=>x2=-14/3-x1=-14/3+1=-11/3

b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)

Để phương trình có nghiệm kép thì 3m+6=0

=>m=-2

Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0

=>x^2-4x+4=0

=>x=2

29 tháng 1 2023

ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi