Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
Ta có F(0)=c=0
=>c=0
Ta lại có F(1)=a×1^2+b×1+c=2
F(1)=a+b+0=2
F(1)=a+b=2
Ta lại có F(2)=a×2^2+2b+c=2
F(2)=4a+2b+0=2
F(2)=4a+2b=2
F(2)=2a+b=1
F(2)=2a+b-2=1-2=-1
F(2)=2a+b-a-b=-1 (Do a+b=1)
F(2)=a=-1
Thay a=-1 vào a+b=1
Ta có -1+b=1
=>b=2
Vậy a=-1,b=2
a) f(-1) = 2 => a.(-1) + b = 2 => -a + b = 2 => b = a+ 2
f(3) = -1 => 3.a + b = -1. thay b = a+ 2 ta được
3. a + a+ 2 = -1 => 4a = -3 => a = -3/4 => b = -3/4 + 2 = 5/4
b) g(2) = 5 => 5.22 + b.2 + c = 5 => 2.b + c = -15 => c = -15 - 2b
g(1) = -1 => 5.(-1)2 + b. (-1) + c = -1 => -b + c = -6 . thay c = -15 - 2b ta được
- b - 15 - 2b = -6 => -3b = 9 => b = -3 => c = -15 -2.(-3) = -9
P(0)=-1=> c=-1
P(1)=3=>a+b+c=3=>a+b=4
P(2)=1=>4a+2b+c=1=>4a+2b=2=>2a+b=1=>a=1-4=-3
=>b=4-(-3)=7
Ta có: P(0) = a.02 + b.0 + c = -1
=> c = -1
P(1) = a.12 + b . 1 + c = 3
=> a + b + c = 3
Mà c = -1 => a + b = 3 - (-1) = 4 (1)
P(2) = a.22 + b.2 + c = 1
=> 4a + 2b + c = 1
Mà c = -1 => 2.(2a + b) = 1 - (-1) = 2
=> 2a + b = 2 : 2
=> 2a + b = 1 (2)
Từ (1) và (2) trừ vế với vế, ta có :
(a + b) - (2a + b) = 4 - 1
=> a + b - 2a - b = 3
=> (a - 2a) + (b - b) = 3
=> -a = 3
=> a = -3
Thay a = -3 vào (1) , ta được :
-3 + b = 4
=> b = 4 - (-3)
=> b = 7
Vậy a = -3; b = 7; c = -1
Ta có: P(0) = a.0 + b.0 + c = 0 + 0 + c = 1
\(\Rightarrow\) c = 1 (1)
P(1) = a,1^2 + b.1 + c = a + b + 1 = 3
\(\Rightarrow\) a + b = 2 (2)
P(-1) = a.(-1)^2 + b.(-1) + c = a - b + 1 = 2
\(\Rightarrow\) a - b = 1 (3)
Lấy (2) + (3) ta có: 2a = 3
\(\Rightarrow\) a = 1,5
Thay a = 1,5 vào (3) ta suy ra: b = 0,5
Vậy: a = 1,5
b = 0,5
c = 1
Chúc bạn học tốt !!!
P(0) = -1
=> c = -1 (1)
P(1) = 3 <=> a + b + c = 3 (2)
P(2) = 1 <=> 4a + 2b + c = 1 (3)
từ (1),(2),(3) ta có hpt
\(\left\{{}\begin{matrix}a+b=4\\4a+2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=7\end{matrix}\right.\)