Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1 b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1 2. a) Tự làm b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\) y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)
3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\) b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)
mk chỉ cho cách lm :
a) thế điềm \(O\left(0;0\right)\) vào d \(\Leftrightarrow x=0;y=0\) --> m
b) thế điểm \(\left(3;5\right)\) vào d \(\Leftrightarrow x=3;y=5\) --> m
c) thế \(x=0;y=0\) rồi biến đổi đẳng thức d
rồi tìm điều kiện để đẳng thức đó không đúng
d) ta có đường thẳng \(d\backslash\backslash Ox\) có dạng \(y=a\) và \(d\backslash\backslash Oy\) có dạng \(x=b\)
--> \(d\backslash\backslash Ox\) \(\Leftrightarrow\) \(2m-1=0\) và --> \(d\backslash\backslash Oy\) \(\Leftrightarrow\) \(m-2=0\)
--> ...
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
a/ \(k=-1=tan\alpha\Rightarrow\alpha=135^0\)
b/ Phương trình d: \(y=kx+b\)
\(\Rightarrow\left\{{}\begin{matrix}0.k+b=1\\k.\left(-\sqrt{3}\right)+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1\\k=\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Rightarrow tan\alpha=k=\frac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)
a: Thay x=0 và y=0 vào (d), ta được:
m+1=0
hay m=-1