\(y=ax+b\)với \(a\ne0\) biết
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

Ta có \(\left\{{}\begin{matrix}f\left(0\right)=5\\f\left(-1\right)=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=5\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=5\\a=3\end{matrix}\right.\)

Vậy hàm số \(y=ax+b=3x+5\) 

Ta có: f(0)=5

nên b=5

hay y=ax+5

Thay x=-1 và y=2 vào y=ax+5, ta được:

\(-a+5=2\)

hay a=3

2 tháng 11 2016

Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)

Xét với x = a thì ta có \(f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\) (1)

Xét với x = \(\frac{1}{a}\) thì ta có \(f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\)(2)

Từ (1) và (2) ta suy ra \(\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\\f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\left(1\right)\\2f\left(\frac{1}{a}\right)+4f\left(a\right)=\frac{2}{a^2}\left(2\right)\end{cases}}\)

Lấy (2) trừ (1) theo vế được \(3f\left(a\right)=\frac{2}{a^2}-a^2\Leftrightarrow f\left(a\right)=\frac{\frac{2}{a^2}-a^2}{3}=\frac{2-a^4}{3a^2}\)

Từ đó suy ra được \(f\left(x\right)=\frac{2-x^4}{3x^2}\)

Đến đây dễ dàng tính được f(2) 

2 tháng 11 2016

Mình kí hiệu (1) (2) hai lần , bạn sửa lại chỗ đó nhé ^^

31 tháng 5 2017

Hàm số bậc nhất

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

24 tháng 6 2018

Ta có : \(\left(x-1\right)f\left(x\right)+f\left(\frac{1}{x}\right)=\frac{1}{x-1}\)            (1) 

Thay x bởi \(\frac{1}{x}\)thì đẳng thức thành : 

\(\left(\frac{1}{x}-1\right)f\left(\frac{1}{x}\right)+f\left(x\right)=\frac{1}{\frac{1}{x}-1}\)

Hay : \(\frac{1-x}{x}f\left(\frac{1}{x}\right)+f\left(x\right)=\frac{x}{1-x}\)         (2) 

Nhân \(\frac{1-x}{x}\)vào hai vế của (1), ta được : 

\(\frac{-x^2+2x-1}{x}f\left(x\right)+\frac{1-x}{x}f\left(\frac{1}{x}\right)=-\frac{1}{x}\)  (3) 

Lấy (2) trừ đì (3) theo từng vế, ta được : 

 \(\left[1-\frac{-x^2+2x-1}{x}\right]f\left(x\right)=\frac{x}{1-x}+\frac{1}{x}\)

Suy ra :  \(f\left(x\right)=\frac{1}{1-x}\)