Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3
ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)
\(\Leftrightarrow4x-3>0\)
\(\Rightarrow x>\frac{3}{4}\)
\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)
Chẳng đáp án nào đúng cả :)
\(x^2-x-12\le0\Rightarrow-3\le x\le4\) (1)
\(x+1>2x+m\Rightarrow x< 1-m\) (2)
Để hệ vô nghiệm \(\Leftrightarrow\) giao của (1) và (2) bằng rỗng
\(\Leftrightarrow1-m\le-3\Rightarrow m\ge4\)
mx-16>=2(x-m^3)
=>mx-16>=2x-2m^3
=>mx-2x-16+2m^3>=0
=>x(m-2)+2(m-2)(m^2+2m+4)>=0
=>(m-2)(x+m^2+2m+4)>=0
TH1: m-2>=0 và x+m^2+2m+4>=0
=>m>=2 và x>=-m^2-2m-4
mà x>=-56
nên -m^2-2m-4=-56
=>m^2+2m+4=56
=>m^2+2m-52=0
=>\(m=-1+\sqrt{53}\)
TH2: m-2<=0 và x+m^2+2m+4<=0
=>m<=2 và x<=-m^2-2m-4
mà x>=-56
nên -56<=x<=-m^2-2m-4
nên -m^2-2m-4=+vô cực(vô lý)