Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R
y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2 – 4x + m = 0
Phương trình trên có hai nghiệm phân biệt khi:
∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)
Hàm số có cực trị tại x = 1 thì :
y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )
Mặt khác, vì:
y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0
cho nên tại x = 1, hàm số đạt cực tiểu.
Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1
\(y'=3x^2-4x+m\)
Để hàm số đạt cực tiểu tai x = 1 thì x = 1 là nghiệm của y' và y' đổi dấu khi đi qua x = 1.
Để x = 1 là nghiệm của y' thì:
\(3.1^2-4.1+m=0\) \(\Rightarrow m=1\)
Với m = 1. khi đó: \(y'=3x^2-4x+1\) có 2 nghiệm là \(1\) và \(\dfrac{1}{3}\); \(y'\) đổi dấu từ âm sang dương khi đi qua x = 1. Vậy hàm số có cực tiểu tại x = 1.
Tập xác định :
Nếu hàm số đạt cực đại tại x = 2 thì y'(2) = 0 ⇔ m2 + 4m + 3 = 0 ⇔ m=-1 hoặc m=-3
- Với m = -1, ta có :
x=0 hoặc x=2.
Ta có bảng biến thiên :
Trường hợp này ta thấy hàm số không đạt cực đại tại x = 2.
- Với m = -3, ta có:
x=2 hoặc x=4
Ta có bản biến thiên :
Trường hợp này ta thấy hàm số đạt cực đại tại x = 2.
Vậy m = -3 là giá trị cần tìm.
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)\)
Để hàm số có cực trị tại x = 1 thì x =1 phải là nghiệm của y'=0.
=> \(3.1^2-2m.1+\left(m-\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow m=\dfrac{7}{3}\)
Khi đó ta có:
\(y=x^3-\dfrac{7}{3}x^2+\dfrac{5}{3}x+5\)
\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)=\dfrac{1}{3}\left(9x^2-14x+5\right)\)
\(y'\) có 2 nghiệm là \(1\) và \(\dfrac{5}{9}\).
\(y'\) đổi dấu từ âm sang dương khi đi qua x = 1 nên tại x = 1 thì hàm số đạt cực tiểu.
Giá trị cực tiểu tại x = 1 là:
\(y\left(1\right)=1^3-\dfrac{7}{3}.1^2+\dfrac{5}{3}.1+5=\dfrac{16}{3}\)
- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị
- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\)
hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép
\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)
Lời giải + diễn giải
để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm
a) \(y'=3x^2-6x+m\)
xét f(x)= 3x^2 -6x+m
để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)
\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)
Kết luận với m< 3 hàm A(x) luôn có cực trị
b)
\(y'=3x^2+4mx+m\)
\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)
c)
\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)
\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)
\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)
\(\Leftrightarrow y'=0\)
có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1\)<\(x_2\)<1
\(\Leftrightarrow\)\(\begin{cases}\Delta'=4m^2-m-5>0\\f\left(1\right)=-5m+7>0\\\frac{S}{2}=\frac{2m-1}{3}<1\end{cases}\)\(\Leftrightarrow\)\(\frac{5}{4}\)<m<\(\frac{7}{5}\)
Tập xác định : \(D=R\backslash\left\{-m\right\}\)
Ta có : \(y=x+\frac{1}{x+m}\Rightarrow y'=1-\frac{1}{\left(x+m\right)^2}\Rightarrow y"=\frac{2}{\left(x+m\right)^3}\)
Hàm số đạt cực tiểu tại \(x=1\Leftrightarrow\begin{cases}y'\left(1\right)=0\\y"\left(1\right)>0\end{cases}\)
\(\Leftrightarrow\begin{cases}1-\frac{1}{\left(x+m\right)^2}=0\\\frac{2}{\left(x+m\right)^3}>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m=0\\m>-1\end{cases}\) \(\Leftrightarrow m=0\)
Vậy m = 0 thì hàm số đạt cực tiểu tạo x = 1
TXĐ: D = R
y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2 – 4x + m = 0
Phương trình trên có hai nghiệm phân biệt khi:
∆ ’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)
Hàm số có cực trị tại x = 1 thì :
y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )
Mặt khác, vì:
y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0
cho nên tại x = 1, hàm số đạt cực tiểu.
Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1