K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

\(A=\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{a+b+2}{\left(a+1\right)\left(b+1\right)}\)

\(=\dfrac{\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}+2}{\left(\dfrac{1}{2+\sqrt{3}}+1\right).\left(\dfrac{1}{2-\sqrt{3}}+1\right)}\)

\(=\dfrac{\dfrac{2-\sqrt{3}+2+\sqrt{3}+2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{\dfrac{3+\sqrt{3}}{2+\sqrt{3}}.\dfrac{3-\sqrt{3}}{2-\sqrt{3}}}=\dfrac{6}{6}=1\)

P/s: ( Nếu sai chỗ nào ns tui vs nha chứ nhiều số quá rối luôn )

26 tháng 5 2022

\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)

Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)

\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

24 tháng 6 2015

1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)

2)\(A=\frac{x-7}{2}\)

Do 2>0 =>A>0 <=>x-7>0<=>x>7

Vậy x>7 thì A>0

3)\(A=\frac{x+3}{x-5}\)

Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0

<=>-3<x<5

Vậy -3<x<5 thì A<0

19 tháng 2 2017

a.

Ta có:

x - 2 \(\ge\)2

=> 5 - (x - 2) \(\ge\)5

=> GTLN của biểu thức là 5, dấu bằng xảy ra khi

(x - 2)2 = 0

=> x - 2 = 0

=> x = 2

b, c tương tự

8 tháng 9 2018

\(a,A=\dfrac{7}{35}+\left(-1\dfrac{3}{4}+\dfrac{12}{7}\right)-\left(\dfrac{1}{4}-\dfrac{2}{7}-\dfrac{12}{35}\right)-\dfrac{3}{7}\)\(A=\dfrac{7}{35}-\dfrac{7}{4}+\dfrac{12}{7}-\dfrac{1}{4}+\dfrac{2}{7}+\dfrac{13}{35}-\dfrac{3}{7}\\ A=\left(\dfrac{7}{35}+\dfrac{13}{35}\right)-\left(\dfrac{7}{4}-\dfrac{1}{4}\right)+\left(\dfrac{12}{7}+\dfrac{2}{7}-\dfrac{3}{7}\right)\)

\(A=\dfrac{4}{7}-\dfrac{3}{2}+\dfrac{11}{7}\\ A=\left(\dfrac{4}{7}+\dfrac{11}{7}\right)-\dfrac{3}{2}\\ A=\dfrac{15}{7}-\dfrac{3}{2}=\dfrac{9}{14}\)

18 tháng 8 2016

Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)

\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)

Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.

Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)

            \(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)

            \(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)

            \(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)

            \(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)

18 tháng 8 2016

123hehe321