Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) KHi đó thì 3(2a-1)+a=0 <=> 7a -3 =0 <=> a=3/7
b) Khi đó 2a - 1 = 3=> a = 2
a) Ta có: 3(2a-1)+a=0 => 7a-3=0 => a=3/7
b) 2a-1=3 và a khác -2 => a = 2
Đồ thị của hàm số \(y=ax+b\) song song với đường thẳng \(y=3x+1.\) \(\Rightarrow\left\{{}\begin{matrix}a=3.\\b\ne1.\end{matrix}\right.\) (1)
Đồ thị của hàm số \(y=ax+b\) cắt trục hoành tại điểm có hoành độ bằng \(-3.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3.\\y=0.\end{matrix}\right.\) (2)
Thay (1); (2) vào hàm số \(y=ax+b\)\(:0=3.\left(-3\right)+b.\Leftrightarrow b=9\left(TM\right).\)
Vậy hàm số đó là: \(y=3x+9.\)
Vì (d)//y=-2x+3 nên a=-2
Vậy: (d): y=-2x+b
Thay x=-4 và y=0 vào (d), ta được:
b+8=0
hay b=-8
a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .
\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)
\(\Rightarrow a=-\dfrac{1}{2}\)
b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)
\(\Leftrightarrow3x+2=2mx-x+8\)
\(\Leftrightarrow3x+2-2mx+m-8=0\)
\(\Leftrightarrow x\left(3-2m\right)=6-m\)
- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
Vậy ...
a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên
Thay x=6 và y=0 vào hàm số y=ax+3, ta được:
\(6a+3=0\)
\(\Leftrightarrow6a=-3\)
hay \(a=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{2}\)
b)
Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
hay \(m\ne\dfrac{1}{2}\)(1)
Để (d) cắt (d') thì \(2m-1\ne3\)
\(\Leftrightarrow2m\ne4\)
hay \(m\ne2\)(2)
Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)