Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của phép chia đa thức \(f\left(x\right)\)cho \(x-1\)và cho \(x+2\), theo thứ tự là \(A\left(x\right),B\left(x\right)\)và dư theo thứ tự là \(4\) và \(1\)
Ta có:
\(f\left(x\right)=\left(x-1\right).A\left(x\right)+4\)
nên \(\left(x+2\right)f\left(x\right)=\left(x-1\right)\left(x+2\right).A\left(x\right)+4\left(x+2\right)\) \(\left(1\right)\)
\(f\left(x\right)=\left(x+2\right).B\left(x\right)+1\)
nên \(\left(x-1\right)f\left(x\right)=\left(x+2\right)\left(x-1\right).B\left(x\right)+1\left(x-1\right)\) \(\left(2\right)\)
Lấy \(\left(1\right)\)trừ \(\left(2\right)\) vế theo vế, ta có:
\(\left[\left(x+2\right)-\left(x-1\right)\right]f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)+4\left(x+2\right)-1\left(x-1\right)\right]\)
\(\Leftrightarrow3f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)\right]+3x+9\)
Do đó: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\frac{A\left(x\right)-B\left(x\right)}{3}+\left(x+3\right)\)
\(\Leftrightarrow f\left(x\right)=5x^2\left(x-1\right)\left(x+2\right)+\left(x+3\right)\)
trong đó, bậc của \(x+3\) nhỏ hơn bậc của \(\left(x-1\right)\left(x+2\right)\)
Vậy, dư của phép chia \(f\left(x\right)\) cho \(\left(x-1\right)\left(x+2\right)\)là \(x+3\)
Gọi thương của phép chia đa thức f(x)f(x)cho x−1x−1và cho x+2x+2, theo thứ tự là A(x),B(x)A(x),B(x)và dư theo thứ tự là 44 và 11
Ta có:
f(x)=(x−1).A(x)+4f(x)=(x−1).A(x)+4
nên (x+2)f(x)=(x−1)(x+2).A(x)+4(x+2)(x+2)f(x)=(x−1)(x+2).A(x)+4(x+2) (1)(1)
f(x)=(x+2).B(x)+1f(x)=(x+2).B(x)+1
nên (x−1)f(x)=(x+2)(x−1).B(x)+1(x−1)(x−1)f(x)=(x+2)(x−1).B(x)+1(x−1) (2)(2)
Lấy (1)(1)trừ (2)(2) vế theo vế, ta có:
[(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)][(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)]
⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9
Do đó: f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)
⇔f(x)=5x2(x−1)(x+2)+(x+3)
Áp dụng định lý Bezout ta có:
\(P\left(x\right)\)chia cho x-2 dư 1 \(\Rightarrow P\left(2\right)=1\left(1\right)\)
\(P\left(x\right)\)chia cho x+1 dư 2 \(\Rightarrow P\left(-1\right)=2\left(2\right)\)
Vì \(P\left(x\right)\)chia cho \(x^2-x-2\)thì được thương 2x-1 và còn dư
\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\)
\(=\left(x^2+x-2x-2\right)\left(2x-1\right)+ax+b\)
\(=\left[x\left(x+1\right)-2\left(x+1\right)\right]\left(2x-1\right)+ax+b\)
\(=\left(x+1\right)\left(x-2\right)\left(2x-1\right)+ax+b\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}-a+b=2\\2a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{-1}{3}\\b=\frac{5}{3}\end{cases}\left(4\right)}\)
Thay (4) vào (3) ta được:
\(P\left(x\right)=\left(x+1\right)\left(x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)\)chia hết cho \(2x-1\Rightarrow f\left(x\right)=\left(2x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(\frac{1}{2}\right)=0\left(1\right)\)
\(f\left(x\right)\)chia cho \(x-2\)dư 6\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+6\)
\(\Rightarrow f\left(2\right)=6\left(2\right)\)
Vì \(f\left(x\right)\)chia cho \(2x^2-5x+2\)được thương là \(x+2\)và còn dư nên
\(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+ax+b\)
\(=\left(2x^2-4x-x+2\right)\left(x+2\right)+ax+b\)
\(=\left[2x\left(x-2\right)-\left(x-2\right)\right]\left(x+2\right)+ax+b\)
\(=\left(x-2\right)\left(2x-1\right)\left(x+2\right)+ax+b\)Kết hợp với (1) và (2) ta được:
\(\hept{\begin{cases}\frac{1}{2}a+b=0\\2a+b=6\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=4\\b=-2\end{cases}}\)
Vạy \(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+4x-2\)
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
Gọi a(x) b(x) lần lượt là các thương của f(x) cho x-1 và x+2
f(x)=(x-1)a(x) + 4
f(1)=4
f(x)=(x+2)b(x) + 1
f(-2)=1
(x-1)(x+2) có bậc là 2=) đa thức dư có dạng cx+d
f(1)=(1-1)(1+2).5x2 +cx+d
=c+d=4
f(-2)=(-2-1)(-2+2).5x2 +c.(-2)+d
=d-2c=1
=)c+d-(d-2c)=c+d-d+2c=3c=3
=)c=1
=)d=3
Vậy đa thức dư của f(x) chia cho(x-1)(x+2) có dạng 1x+3 hay x+3