Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THAM KHẢO!
Chương trình trên tính tổng các giá trị i*(i+1) trong khoảng từ 0 đến n-1 và lưu kết quả vào biến s. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng for và các phép toán trong vòng lặp.
Vòng for: Vòng lặp này chạy từ 0 đến n-1, với n là 1.000. Vậy số lần lặp là n, hay 1.000 lần.
Các phép toán trong vòng lặp:
Phép gán s = s + i*(i+1): Đây là phép gán giá trị vào biến s, có độ phức tạp là O(1).
Phép toán i*(i+1): Đây là phép nhân và cộng, có độ phức tạp là O(1).
Vậy tổng độ phức tạp thời gian của chương trình là O(n), hay O(1.000)
Công việc của hàm là thực hiện sắp xếp.
Độ phức tạp của thuật toán là O(n2)
Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.
Độ phức tạp của thuật toán sắp xếp nổi bọt là O(n2)
T = O(n) + O(n2) = O(n2)
*Chương trình 1:
from collections import Counter
import time
n = 1000
c = 0
# Ghi lại thời điểm bắt đầu
start_time = time.time()
for k in range(n):
c = c + 1
# Ghi lại thời điểm kết thúc
end_time = time.time()
# Tính thời gian hoàn thành
elapsed_time = end_time - start_time
# Sử dụng hàm Counter để đếm số lần lặp
counter = Counter(range(n))
# In số lần lặp
print("Số lần lặp: {}".format(counter))
# In thời gian thực thi
print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))
*Chương trình 2:
import time
n = 1000
c = 0
# Ghi lại thời điểm bắt đầu
start_time = time.perf_counter()
for k in range(n):
for j in range(n):
c = c + 1
# Ghi lại thời điểm kết thúc
end_time = time.perf_counter()
# Tính thời gian hoàn thành
elapsed_time = end_time - start_time
# In số lần lặp
print("Số lần lặp: {}".format(c))
# In thời gian thực thi
print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))
→Sự khác biệt độ phức tạp thời gian của 2 chương trình trên:
Độ phức tạp thời gian của chương trình 1 là O(1), còn độ phức tạp thời gian của chương trình 2 là O(n2).
Để chứng minh tính đúng đắn của thuật toán sắp xếp chèn với các lệnh thay đổi trên, ta cần chứng minh hai điều kiện sau đây:
Điều kiện ban đầu (trước khi bắt đầu vòng lặp): Sau khi thực hiện lệnh j = 1, giá trị của j đang là 1, và dãy con A[0] chỉ gồm một phần tử là A[0] (vì j-1 là 0). Do đó, dãy con này đã được sắp xếp đúng.
Điều kiện duy trì (trong quá trình vòng lặp): Trong mỗi vòng lặp của while, nếu A[j] < A[j-1], ta hoán đổi giá trị của A[j] và A[j-1] bằng lệnh Đổi chỗ A[j] và A[j-1]. Sau đó, ta giảm giá trị của j đi 1 đơn vị bằng lệnh j = j - 1. Lúc này, giá trị của A[j] là giá trị của A[j-1] trước khi hoán đổi, và giá trị của A[j-1] là giá trị của A[j] trước khi hoán đổi. Điều này đồng nghĩa với việc dãy con A[0], A[1], ..., A[j-1] đã được sắp xếp đúng sau mỗi vòng lặp.
Vậy nên, dãy con A[0], A[1], ..., A[j-1] luôn được sắp xếp đúng sau mỗi vòng lặp của while, và dãy con này sẽ không bị thay đổi giá trị trong quá trình hoán đổi. Do đó, tính đúng đắn của thuật toán sắp xếp chèn vẫn được duy trì sau khi thay toàn bộ phần chèn A[i] vào vị trí đúng của dãy con A[0], A[1], ..., A[i-1] bằng các lệnh trên.
Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.
Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.
Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.
Chương trình trên tính số lần lặp cần thiết để i lớn hơn n bằng cách nhân i với 2 trong mỗi lần lặp, sau đó tăng biến sum lên 1. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng while và các phép toán trong vòng lặp.
Vòng while: Vòng lặp này chạy cho đến khi i >= n, và giá trị ban đầu của i là 1. Trong mỗi lần lặp, i được nhân với 2, vậy số lần lặp là log2(n) (vì sau mỗi lần nhân i với 2, giá trị của i sẽ gấp đôi). Ví dụ, nếu n = 1000 thì số lần lặp là log2(1000) ≈ 10.
Các phép toán trong vòng lặp:
Phép gán i = i * 2: Đây là phép nhân, có độ phức tạp là O(1).
Phép gán sum = sum + 1: Đây là phép gán giá trị vào biến sum, có độ phức tạp là O(1).
Vậy tổng độ phức tạp thời gian của chương trình là O(log n), hay O(log2(1000)) ≈ O(10)