K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Chương trình trên tính số lần lặp cần thiết để i lớn hơn n bằng cách nhân i với 2 trong mỗi lần lặp, sau đó tăng biến sum lên 1. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng while và các phép toán trong vòng lặp.

Vòng while: Vòng lặp này chạy cho đến khi i >= n, và giá trị ban đầu của i là 1. Trong mỗi lần lặp, i được nhân với 2, vậy số lần lặp là log2(n) (vì sau mỗi lần nhân i với 2, giá trị của i sẽ gấp đôi). Ví dụ, nếu n = 1000 thì số lần lặp là log2(1000) ≈ 10.

Các phép toán trong vòng lặp:

Phép gán i = i * 2: Đây là phép nhân, có độ phức tạp là O(1).

Phép gán sum = sum + 1: Đây là phép gán giá trị vào biến sum, có độ phức tạp là O(1).

Vậy tổng độ phức tạp thời gian của chương trình là O(log n), hay O(log2(1000)) ≈ O(10)

18 tháng 7 2023

THAM KHẢO!

Chương trình trên tính tổng các giá trị i*(i+1) trong khoảng từ 0 đến n-1 và lưu kết quả vào biến s. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng for và các phép toán trong vòng lặp.

Vòng for: Vòng lặp này chạy từ 0 đến n-1, với n là 1.000. Vậy số lần lặp là n, hay 1.000 lần.

Các phép toán trong vòng lặp:

Phép gán s = s + i*(i+1): Đây là phép gán giá trị vào biến s, có độ phức tạp là O(1).

Phép toán i*(i+1): Đây là phép nhân và cộng, có độ phức tạp là O(1).

Vậy tổng độ phức tạp thời gian của chương trình là O(n), hay O(1.000)

19 tháng 8 2023

Tham khảo:

Hàm "Mystery(n)" sẽ trả về giá trị là r.

Độ phức tạp thời gian của chương trình này là O(n3)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Công việc của hàm là thực hiện sắp xếp.

Độ phức tạp của thuật toán là O(n2)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Độ phức tạp của thuật toán sắp xếp nổi bọt là O(n2)

T = O(n) + O(n2) = O(n2)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

*Chương trình 1:

from collections import Counter

import time

n = 1000

c = 0

# Ghi lại thời điểm bắt đầu

start_time = time.time()

for k in range(n):

  c = c + 1

# Ghi lại thời điểm kết thúc

end_time = time.time()

# Tính thời gian hoàn thành

elapsed_time = end_time - start_time

# Sử dụng hàm Counter để đếm số lần lặp

counter = Counter(range(n))

# In số lần lặp

print("Số lần lặp: {}".format(counter))

# In thời gian thực thi

print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))

*Chương trình 2:

import time

n = 1000

c = 0

# Ghi lại thời điểm bắt đầu

start_time = time.perf_counter()

for k in range(n):

 for j in range(n):

  c = c + 1

# Ghi lại thời điểm kết thúc

end_time = time.perf_counter()

# Tính thời gian hoàn thành

elapsed_time = end_time - start_time

# In số lần lặp

print("Số lần lặp: {}".format(c))

# In thời gian thực thi

print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))

→Sự khác biệt độ phức tạp thời gian của 2 chương trình trên:

Độ phức tạp thời gian của chương trình 1 là O(1), còn độ phức tạp thời gian của chương trình 2 là O(n2).

Bài 2: Thời gian làm việc của máy tính. N máy tính có số hiệu 1..N thực hiện N chương trình. Thời gian thực hiện chương trình của máy tính có số hiệu i là từ thời điểm thời gian ai đến thời điểm thời gian bi (1<N<=1000, ai, bi nguyên dương, ai<bi<=2000). Hãy xác định nhiều nhất các khoảng thời gian thực hiện chương trình của các máy tính sao cho không có thời điểm thời gian nào trùng nhau....
Đọc tiếp

Bài 2: Thời gian làm việc của máy tính.

N máy tính có số hiệu 1..N thực hiện N chương trình. Thời gian thực hiện chương trình của máy tính có số hiệu i là từ thời điểm thời gian ai đến thời điểm thời gian bi (1<N<=1000, ai, bi nguyên dương, ai<bi<=2000). Hãy xác định nhiều nhất các khoảng thời gian thực hiện chương trình của các máy tính sao cho không có thời điểm thời gian nào trùng nhau. Mỗi khoảng thời gian tìm được là chỉ bao gồm các thời điểm thời gian thực hiện chương trình của 1 máy tính.

Dữ liệu vào là tệp văn bản THOIGIAN.INP có cấu trúc:

- Dòng đầu tiên ghi số N

- N dòng tiếp theo ghi thời điểm thời gian bắt đầu và thời điểm thời gian kết thúc việc thực hiện chương trình của 1 máy tính (ghi cách nhau ít nhất là 1 ký tự trống). Thông tin về khoảng thời gian thực hiện chương trình của các máy tính được ghi tuần tự theo thứ tự tăng dần số hiệu của các máy tính đó.

Dữ liệu ra là tệp văn bản THOIGIAN.OUT có cấu trúc:

- Dòng đầu tiên ghi số lượng các khoảng thời gian tìm được.

- Các dòng tiếp theo ghi số hiệu của các máy tính có các khoảng thời gian tìm được. Mỗi số hiệu ghi trên 1 dòng và số hiệu của máy tính nào có khoảng thời gian với các thời điểm thời gian bắt đầu, thời điểm thời gian kết thúc chương trình nhỏ hơn thì được ghi trước.

Ví dụ:

THOIGIAN.INP

THOIGIAN.OUT

8

2 3

4 5

10 12

13 15

1 9

2 5

6 8

7 15

5

1

2

7

3

4

0
23 tháng 8 2023

Để chứng minh tính đúng đắn của thuật toán sắp xếp chèn với các lệnh thay đổi trên, ta cần chứng minh hai điều kiện sau đây:

Điều kiện ban đầu (trước khi bắt đầu vòng lặp): Sau khi thực hiện lệnh j = 1, giá trị của j đang là 1, và dãy con A[0] chỉ gồm một phần tử là A[0] (vì j-1 là 0). Do đó, dãy con này đã được sắp xếp đúng.

Điều kiện duy trì (trong quá trình vòng lặp): Trong mỗi vòng lặp của while, nếu A[j] < A[j-1], ta hoán đổi giá trị của A[j] và A[j-1] bằng lệnh Đổi chỗ A[j] và A[j-1]. Sau đó, ta giảm giá trị của j đi 1 đơn vị bằng lệnh j = j - 1. Lúc này, giá trị của A[j] là giá trị của A[j-1] trước khi hoán đổi, và giá trị của A[j-1] là giá trị của A[j] trước khi hoán đổi. Điều này đồng nghĩa với việc dãy con A[0], A[1], ..., A[j-1] đã được sắp xếp đúng sau mỗi vòng lặp.

Vậy nên, dãy con A[0], A[1], ..., A[j-1] luôn được sắp xếp đúng sau mỗi vòng lặp của while, và dãy con này sẽ không bị thay đổi giá trị trong quá trình hoán đổi. Do đó, tính đúng đắn của thuật toán sắp xếp chèn vẫn được duy trì sau khi thay toàn bộ phần chèn A[i] vào vị trí đúng của dãy con A[0], A[1], ..., A[i-1] bằng các lệnh trên.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.

Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.

Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.