\(\frac{2}{x+\frac{1}{1+\frac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

làm luôn nha bn giang:)

22 tháng 2 2020

1/

\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)

\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)

\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)

\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)

\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)

\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)

\(\Leftrightarrow x=14\)

vậy...................

2/ 

\(a,ĐKXĐ:x\ne\pm2\)

\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)

          \(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)

           \(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)

            \(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)

c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)

với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)

28 tháng 3 2020

a) ĐKXĐ: x khác +2

\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)

<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)

<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22

<=> x^2 - 7x - 2 = 2x - 22

<=> x^2 - 7x - 2 - 2x + 22 = 0

<=> x^2 - 9x + 20 = 0

<=> (x - 4)(x - 5) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

làm nốt đi 

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.