Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(f\left(-1\right)=-1+a-b-2=0\left(1\right)\)
\(f\left(1\right)=1+a+b-2=0\left(2\right)\)
Lấy (1) cộng (2) ta đc :
\(2a-4=0\)
\(a=2\)
Thay a=2 vào (1) ta đc : b=-1
Vậy ...
f(1)=\(1^3+a.1^2+b.1-2=0\Rightarrow a+b=1\)1
f(-1)=\(\left(-1\right)^3+a.\left(-1\right)^2-b-2=0\) \(\Rightarrow a-b=3\)
\(\Rightarrow a+b+a-b=4\)\(\Rightarrow a=2\Rightarrow b=1\)

tìm no của đa thức f(x)=x3+ax2+bx+c. Biết rằng đa thức có no và a+2b+4c=−12
no là nghiệm đấy
nghiệm là j =))

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0
vậy ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\ge\) 0
mà ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\le\)0
suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0
do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)