Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p(x)=\(x^3+ã^2+bx+c\)
với x=1 thì p(1)=0 hay
\(1+a+b+c=0\)
p(x) \(chia\)p(x-2) dư 6
với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)
tương tự với cái còn lại
xong bạn giải hệ phương trình bậc nhất ba ẩn là xong
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
Giao luu vấn đề mới
x=1, -2 là nghiệm
\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)
Nghiệm của x - 2 là 2
A chia hết cho x - 2 nên ta thay nghiệm của x - 2 vào A ta có:
\(A=a\cdot2^3+b\cdot2^2+2=0=>8a+4a+c=0\) (1)
A(x) chia `x^2+x-2` dư 3x+2 nên A(x) - (3x+2) chia hết cho `x^2+x-2`
Ta có nghiệm của là: \(x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Lần lượt thay `x=1` và `x=-2` vào A(x) - (3x+2) ta có:
\(A=a\cdot1^3+b\cdot1^2+c-\left(3\cdot1+2\right)=0\Rightarrow a+b+c=5\) (2)
\(A=a\cdot\left(-2\right)^3+b\cdot\left(-2\right)^2+c-\left(3\cdot-2+2\right)=0=>-8a+4b+c=-4\) (3)
Từ (1) , (2) và (3) ta có hpt: \(\left\{{}\begin{matrix}8a+4b+c=0\\a+b+c=5\\-8a+4b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{4}\\b=-\dfrac{9}{4}\\c=7\end{matrix}\right.\)