Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(y=x^3-2x^2+x-1\)
TXĐ : \(x\inℝ\)
b) \(y=\frac{x-1}{\left(x+1\right)\left(x-3\right)}\)
TXĐ : \(\hept{\begin{cases}x\inℝ\\x\ne-1\\x\ne3\end{cases}}\)
c) \(y=\frac{1}{x^2-2x+3}\)
TXĐ : \(x\inℝ\)
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
a) ĐKXĐ : \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\)
b) \(5-2x\ne0\Leftrightarrow x\ne\frac{5}{2}\)
c) \(x+4\ne0\Leftrightarrow x\ne-4\)
d) \(2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
e) Với mọi x là số thực
f) \(\begin{cases}4-x\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow-1\le x\le4\)
\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)
\(1\le x\le3\)thì biểu thức được xác định
\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)
để biểu thức đc xác định thì
\(\sqrt{x-2}\ge0\)
\(x\ge2\)
\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)
\(x>\frac{1}{2}\)
kết hợp điều kiện thì \(x\ge2\)
\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{4}{x-1}\)
\(< =>x\ne0\)để biểu thức đc xđ
c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t
các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm