Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho tương đương:
\(\frac{1}{x\left(x^2+1\right)}=\frac{a\left(x^2+1\right)+bx^2+c}{\text{x}\left(x^2+1\right)}\)
<=> ax^2 + a + bx^2 +cx= 1
Nếu k cho điều kiện của a,b,c thì chỉ làm dc đến đó thôi, có lẽ pahri cần a,b,c nguyên chăng?
\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)
\(\frac{1}{x+\left(x^2+1\right)}=\frac{\text{ã}^2+a+bx^2+cx}{x\left(x^2+1\right)}\)
\(\frac{1}{x\left(x^2+1\right)}=\frac{x^2\left(a+b\right)+cx+a}{x\left(x^2+1\right)}\)
Đồng nhất với phân thức \(\frac{1}{x\left(x^2+1\right)}\)ta được:
\(a+b=0\)\(c=0\)\(a=1\)
\(\Rightarrow b=-1\)
Vậy:\(\frac{1}{x\left(x^2+1\right)}=\frac{1}{x}-\frac{x}{x^2+1}\)
tích hộ nha.Học tốt
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
\(f\left(x\right)=ax^3+bx+c\)
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)