Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+\left(b-a\right).x^2-\left(a+b\right).x-b\)
\(=ax^3+cx^2-1\)
\(\Leftrightarrow\hept{\begin{cases}b-a=c\\a+b=0\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Vậy ...
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
1 ) Ta có :
\(ax+2x+ay+2y+4\)
\(=x\left(a+2\right)+y\left(a+2\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
\(=\left(a-2\right)\left(a+2\right)+4\) ( do \(x+y=a-2\) )
\(=a^2-4+4\)
\(=a^2\left(đpcm\right)\)
2 ) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+bx^2-ax^2-bx-ax-b=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+x^2\left(b-a\right)-\left(b+a\right)x-b=ax^3+x^2c-0.x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}b-a=c\\b+a=0\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\1+a=0\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\a=-1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=-1\\b=1\end{matrix}\right.\)
Vậy \(a=-1;b=1;c=2\)
Ta có:
\(ax+2x+ay+2y+4\)
\(=\left(ax+ay\right)+\left(2x+2y\right)+4\)
\(=a\left(x+y\right)+2\left(x+y\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
Thay \(x+y=a-2\), ta được
\(=\left(a-2\right)\left(a+2\right)+4\)
\(=a^2-4+4\)
\(=a^2\)
Khai triển VT, ta có: \(VT=ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)
Đồng nhất hệ số ta có hệ điều kiện:
\(\left\{{}\begin{matrix}a=1\\b+ac=-1\\bc+2a=0\\2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-2\end{matrix}\right.\)
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
a) Do đa thức bị chia có bậc 3
đa thức chia có bậc 2
nên đa thức thương là nhị thức bậc nhất.
\(\Rightarrow\) Hạng tử bậc nhất: \(x^3:x^2=x\)
\(Đặt\text{ }đa\text{ }thức\text{ }thương\text{ }là:x+c\\ \RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^3\: +ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\\ =x^3+2x^2+3x+cx^2+2cx+3c\\ =x^3+\left(c+2\right)x^2+\left(2c+3\right)x+3c\\ \Rightarrow\left\{{}\begin{matrix}c+2=a\\2c+3=2\\3c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c+2\\c=-\dfrac{1}{2}\\b=3c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=\dfrac{3}{2};b=-\dfrac{3}{2}\)
b) Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là tam thức 2
\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)
\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-3x^3-3cx^2-3dx+4x^2+4cx+4d\\ =x^4+\left(c-3\right)x^3+\left(d-3c+4\right)x^2+\left(4c-3d\right)x+4d\\ \Rightarrow\left\{{}\begin{matrix}c-3=-3\Rightarrow c=0\\d-3c+4=3\\4c-3d=a\\4d=b\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}d-0+4=3\Rightarrow d=-1\\0-3d=a\\4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=3;b=-4\)
c) Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là nhị thức bậc 2
\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)
Đặt đa thức thương là \(x^2+cx+d\)
\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+bx^2+ax+b=\left(x^2-1\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-x^2-cx-d\\ =x^4+cx^3+\left(d-1\right)x^2-cx-d\\ \Rightarrow\left\{{}\begin{matrix}c=-3\\d-1=b\\-c=a\\-d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-3\\b=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}thì\text{ }a=-3;b=-\dfrac{1}{2}\)
Câu a , b bạn Trần Quốc Lộc làm rồi , câu c mk làm cách k phải hệ số bất định cho
c) Do đa thức chia có bậc 4 , đa thức bị chia có bậc 2 . Suy ra thương có bậc 2
Đặt đa thức chia là : f( x )
Gọi thương của phép chia là q( x) , ta có :
f( x ) = ( x2 - 1). q( x) , với mọi x
(=) x4 - 3x3 + bx2 + ax + b = ( x2 - 1). q( x) , với mọi x ( 1)
Chọn các giá trị riêng của x sao cho :
x2 - 1 = 0 (=) x = 1 hoặc x = - 1
* Với x = 1 , ta có :
(1) <=> - 2 + 2b + a = 0 ( 2)
* Với x = - 1 , ta có :
( 1) <=> 4 + 2b - a = 0 ( 3)
Từ ( 2 , 3 ) ta nhận được : a = 3 ; b = \(-\dfrac{1}{2}\)
Vậy , với a = 3 ; b = \(-\dfrac{1}{2}\) thỏa mãn điều kiện đầu bài
a: =>6x^2+2xb-15x-5b=ax^2+x+c
=>6x^2+x(2b-15)-5b=ax^2+x+c
=>a=6; 2b-15=1; -5b=c
=>a=6; b=8; c=-40
b: =>ax^3-ax^2-ax+bx^2-bx-b=ax^3+cx^2-1
=>x^2(-a+b)+x(-a-b)-b=cx^2-1
=>-b=-1; -a+b=c; -a-b=0
=>b=1; c=b-a; a=-b=-1
=>c=b-a=1-(-1)=2; b=1; a=-1