\(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

13 tháng 8 2020

câu 1 

a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)

b) \(B=x^2y^3-3xy+4\)

khi x = -1 và y = 2

\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)

\(\Leftrightarrow B=1.8-\left(-6\right)+4\)

\(\Leftrightarrow B=14+4=18\)

c) nhân phần biến với biến hệ với hệ thì ra thôi

13 tháng 8 2020

Câu 1 a) |x - 2| + 4 = 6

=> |x - 2| = 2

=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Vậy x \(\in\left\{4;0\right\}\)

b) Thay x = -1 ; y = 2 vào B ta có :

B = (-1)2.23 - 3.(-1).2 + 4

= 8 + 6 + 4 = 18

c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)

Hệ số : 12

Bậc của đơn thức : 15

Phần biến x8y7

2) a)  f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)

= 4x3 - 2x2 + 2x + 6

Bậc của f(x) - g(x) là 3 

b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1

= 2x + 4

Lại có f(x) + g(x) = 0

=> 2x + 4 = 0

=> 2x = -4

=> x = -2

Vậy x = -2

27 tháng 12 2019

\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)

\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)

\(-\left(2x^4-x^3+x^2+2x+1\right)\)

\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)

\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)

\(=2x^4+4x^3-2x\)

18 tháng 12 2017

a) f (x) + h (x) = g (x)

⇒h(x)=g(x)−f(x)⇒h(x)=g(x)−f(x)

h(x)=(x4−x3+x2+5)−(x4−3x2+x−1)h(x)=(x4−x3+x2+5)−(x4−3x2+x−1)

h(x)=x4−x3+x2+5−x4+3x2−x+1h(x)=−x3+4x2−x+6h(x)=x4−x3+x2+5−x4+3x2−x+1h(x)=−x3+4x2−x+6

b) f (x) - h (x) = g (x)

⇒h(x)=f(x)−g(x)⇔h(x)=(x4−3x2+x−1)−(x4−x3+x2+5)⇒h(x)=f(x)−g(x)⇔h(x)=(x4−3x2+x−1)−(x4−x3+x2+5)

⇔h(x)=x4−3x2+x−1−x4+x3−x2−5⇔h(x)=x3−4x2+x−6



26 tháng 3 2018

a. Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

= x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

= -x3 + 4x2 – x + 6

b. Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

= x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

= x3 – 4x2 + x – 6