Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 2 x 2 - 2 2 x + 1 = 0 có a = 2, b = -2 2 , c = 1
Ta có: ∆ = b 2 – 4ac = - 2 2 2 – 4.2.1 = 8 – 8 = 0
Phương trình có nghiệm kép :
Phương trình 2 x 2 – (1 - 2 2 )x - 2 = 0 có a = 2, b = -(1 - 2 2 ), c = - 2
Ta có: ∆ = b 2 – 4ac = - 1 - 2 2 2 – 4.2.(- 2 )
= 1 - 4 2 + 8 + 8 2 = 1 + 4 2 + 8
= 1 + 2.2 2 + 2 2 2 = 1 + 2 2 2 > 0
= 1 + 2 2
Phương trình có 2 nghiệm phân biệt :
Phương trình 5 x 2 – x + 2 = 0 có a = 5, b = -1, c = 2
Ta có: ∆ = b 2 – 4ac = - 1 2 – 4.5.2 = 1 – 40 = -39 < 0
Vậy phương trình vô nghiệm.
Phương trình 3 x 2 + 7,9x + 3,36 = 0 có a = 3, b = 7,9, c = 3,36
Ta có: Δ = b 2 – 4ac = 7 , 9 2 – 4.3.3,36 = 62,41 – 40,32 = 22,09 > 0
∆ = 22 , 09 = 4,7
Phương trình có 2 nghiệm phân biệt :
Phương trình 2 x 2 – 5x + 1 = 0 có a = 2, b = -5, c = 1
Ta có: ∆ = b 2 – 4ac = - 5 2 – 4.2.1 = 25 – 8 = 17 > 0
∆ = 17
Phương trình có 2 nghiệm phân biệt :
Làm mẫu hai câu a, b thôi nha.
a, \(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}y\\\sqrt{3}.\sqrt{3}y+2y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}y\\5y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}+3}{5}\\y=\dfrac{1+\sqrt{3}}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\approx0,95\\y\approx0,55\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}\left(\sqrt{2}-\sqrt{5}y\right)-\sqrt{5}y=1\\x=\sqrt{2}-\sqrt{5}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-\sqrt{5}\left(\sqrt{2}+1\right)y=1\\x=\sqrt{2}-\sqrt{5}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{2}-1}{\sqrt{5}}\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\approx0,19\\x=1\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-3y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
Lấy phương trình dưới trừ phương trình trên thu được: \(5y=1+\sqrt{3}\Rightarrow y=\dfrac{1+\sqrt{3}}{5}\Rightarrow x=\sqrt{3}y=\dfrac{3+\sqrt{3}}{5}\)
b) Cộng hai phương trình lại với nhau thu được:
\(\left(\sqrt{2}+1\right)x=\sqrt{2}+1\Leftrightarrow x=1\Rightarrow y=\dfrac{\sqrt{2}-1}{\sqrt{5}}\)
c) \(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
Lấy phương trình trên trừ phương trình dưới:
\(\left(\sqrt{2}-1\right)x=0\Leftrightarrow x=0\Rightarrow y=\dfrac{2-x}{\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
d) Hướng dẫn. Nhân phương trình đầu với \(\sqrt{2}\) rồi lấy phương trình thu được trừ phương trình dưới.