Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: pt (2) hình như có vấn đề
b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)
=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6
bài 2: ĐK: x >0 và x khác 1
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)
b) ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min
c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)
để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
x | 4(t/m) | 0(k t/m) | 9(t/m) | PTVN |
=> x thuộc (4;9)
bìa 3: câu này bạn đăng riêng mình làm rồi đó
Bài 1 : dùng ĐK chặn x;y
Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2
Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số
Bài 4: Đi ngủ .VV
Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác
\(1,ĐKXĐ:x\ge-y\)
Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)
\(\Rightarrow\sqrt{x^2+x+2}=x+1\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)
\(\Leftrightarrow x=1\)
Thế vào hệ có \(\sqrt{y+1}=2-y\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)
\(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Bài 1: (Mình vẫn ko hiểu lắm là phải làm ntn nên sẽ làm 2 cách)
a) \(-30x^2+30x-7,5=0\)
C1: Ta có: \(a=-30\) ; \(b=30\) ; \(c=-7,5\)
\(\Rightarrow\) \(\Delta=b^2-4ac=30^2-4.\left(-30\right).\left(-7,5\right)\)
\(\Delta=1012>0\) (lấy gần bằng nhưng vì \(\Delta\) ko có giá trị gần bằng nên chỉ ghi là "=" thôi)
\(\Rightarrow\)\(\sqrt{\Delta}=\sqrt{1012}=2\sqrt{253}\)
Vậy p/t đã cho có 2 nghiệm phân biệt là:
\(x_1=\frac{b^2-\sqrt{\Delta}}{2a}=\frac{\left(-30\right)^2-2\sqrt{253}}{2.\left(-30\right)}\approx-14,47\)
\(x_2=\dfrac{b^2+\sqrt{\Delta}}{2a}=\dfrac{\left(-30\right)^2+2\sqrt{253}}{2.\left(-30\right)}\approx-15.53\)
C2: Ta có: \(a=30\) ; \(b'=-15\) ; \(c=7,5\)
\(\Rightarrow\) \(\Delta'=b'^2-ac=\left(-15\right)-30.7,5\)
\(\Delta=0\)
Vậy p/t đã cho có nghiệm kép:
\(x_1=x_2=-\dfrac{b'}{a}=-\dfrac{\left(-15\right)}{30}=\dfrac{1}{2}=0,5\)
b) (Tương tự)
Bài 2:
\(x^2-2\left(m+2\right)x+m^2-12=0\)
a) Tại \(m=-4\) thì:
\(x^2-2\left(-4+2\right)x+\left(-4\right)^2-12=0\)
\(\Leftrightarrow\) \(x^2-2.\left(-2\right)x+\left(-4\right)^2-12=0\)
\(\Leftrightarrow\) \(x^2+4x+16-12=0\)
\(\Leftrightarrow\) \(x^2+4x+4=0\)
\(\Leftrightarrow\) \(\left(x+2\right)^2=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\) \(x=-2\)