Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}=\frac{a\left(x+1\right)+b\left(x-1\right)}{x^2-1}+\frac{cx+d}{x^2+1}\)
\(=\frac{ax+bx+a-b}{x^2-1}+\frac{cx+d}{x^2+1}=\frac{\left(ax+bx+a-b\right)\left(x^2+1\right)+\left(cx+d\right)\left(x^2-1\right)}{x^4-1}\)
\(=\frac{\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)}{x^4-1}\)
Suy ra \(\frac{6x^3-5x^2+3}{x^4-1}=\frac{\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)}{x^4-1}\)
\(\Rightarrow\) \(\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)=6x^3-5x^2+3\)
Đồng nhất hệ số ta được \(\hept{\begin{cases}a+b+c=6\\a-b+d=-5\end{cases}}\) và \(\hept{\begin{cases}a+b-c=0\\a-b-d=3\end{cases}}\)
Giải ra ta được a = 1; b = 2; c = 3; d = -4
b/
\(\frac{1}{x^3-1}=\frac{a}{x-1}+\frac{6x+c}{x^2+x+1}=\frac{\left(a+6\right)x^2+\left(c+a-6\right)x-c+a}{x^3-1}\)
Đồng nhất thức 2 vế ta được
\(\hept{\begin{cases}a+6=0\\c+a-6=0\\a-c=1\end{cases}}\)
Vô nghiệm vậy không tồn tại a, c thỏa cái đó
a/ Ta có
\(\frac{10x-4}{x^3-4x}=\frac{a}{x}+\frac{b}{x-2}+\frac{c}{x+2}=\frac{\left(a+b+c\right)x^2+\left(2b-2c\right)x-4a}{x^3-4x}\)
Đồng nhất thức 2 vế ta được
\(\hept{\begin{cases}a+b+c=0\\2b-2c=10\\-4a=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}\)
ko bt có sai ko nữa mà mình tìm ra câu a hai nghiệm:\(\frac{-11+\sqrt{69}}{26}\)
và \(\frac{-11-\sqrt{69}}{29}\)
d) \(\frac{1}{2x-3}-\frac{3}{x.\left(2x-3\right)}=\frac{5}{x}\)
\(\Leftrightarrow\frac{x}{x.\left(2x-3\right)}-\frac{3}{x.\left(2x-3\right)}=\frac{5.\left(2x-3\right)}{x.\left(2x-3\right)}\)
\(\Leftrightarrow x-3=5.\left(2x-3\right)\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-10x=\left(-15\right)+3\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow9x=12\)
\(\Leftrightarrow x=12:9\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)
\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)
\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)
\(\Leftrightarrow-99x+1080-80x-6=0\)
\(\Leftrightarrow1074-179x=0\)
\(\Leftrightarrow179x=1074\)
hay x=6
Vậy: x=6
b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)
\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)
\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)
\(\Leftrightarrow6-18x-6+5x=0\)
\(\Leftrightarrow-13x=0\)
mà -13≠0
nên x=0
Vậy: x=0
c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)
\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)
\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)
\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)
\(\Leftrightarrow-181x-362=0\)
\(\Leftrightarrow-181x=362\)
hay x=-2
Vậy: x=-2
e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)
\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)
\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
hay x=1
Vậy: x=1
a)có khả năng sai đề bài
b)Liệu có sai đề bài không
c)\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)(phân số cuối có âm vì (1-x)=-(x-1)
\(=\frac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)(Hơi tắt)
\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x^2+x+1}\)
d)\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy+4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2+4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x-2y}\)
a)Có: \(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}=\frac{a\left(x-1\right)\left(x+1\right)+bx\left(x+1\right)+cx\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(\frac{a\left(x^2-1\right)+bx^2+bx+cx^2+cx}{x\left(x^2-1\right)}=\frac{ax^{2\:}-a+bx^2+bx+cx^2-cx}{x^3-x}\)
\(=\frac{\left(a+b+c\right)x^2+\left(b-c\right)x-a}{x^3-x}\)
Do đó: \(\frac{6x^2-x-1}{x^3-x}=\frac{\left(a+b+c\right)x^2+\left(b-c\right)x-a}{x^3-x}\)
Đồng nhất hai phân thức trên ta được:
\(\begin{cases}a+b+c=6\\b-c=-1\\a=1\end{cases}\)\(\Leftrightarrow\begin{cases}a=1\\b=2\\c=3\end{cases}\)
Phần b tương tự