K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016
Câu a Mk chưa giải đc B) ta có x4+ax2+1= (x-1)2.P(x) Cho x=1, ta có 1+a+1=0 =>a=-2 C)ta có 2x2+ax+5=(x+3).Q(x)+41 Cho x=-3 => 23-3a=41 =>a=-6

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1

23 tháng 10 2016

Cho mình làm lại :

undefined

Để phép chia hết thì \(xa-3x+b+2=0\)

Đặt \(x=0\Rightarrow b+2=0\)

\(\Rightarrow b=-2\)

Đặt \(x=1\Rightarrow a-3+2+\left(-2\right)=0\)

\(\Rightarrow a=3\)

Vậy ...

23 tháng 10 2016

( ͡° ͜ʖ ͡°)

( ͡° ͜_ ͡°) x^4 - 3x^3 + 2x^2 - ax + b x^2 - x - 2 x^2 - 2x +1 x^4 - x^3 - 2x^2 -2x^3 + 3x^2 - ax + b -2x^3 + 2x^2 +4x x^2 -(a-4)x+b x^2 - x - 2 (a-3)x+(b+2)

Để phép chia hết thì \(\left(a-3\right)x+\left(b+2\right)=xa-3x+b+2=0\)

19 tháng 8 2015

Ta có 2x4 + ax2 + b = 2x2. (x- x + 3)  + 2x- 6x2 + ax2 + b = 2x2. (x- x+ 3) + 2x3  + (a - 6).x+ b

= 2x2. (x- x+ 3) + 2x. (x2 - x + 3) + 2x2 - 6x + (a - 6).x+ b = (2x2 + 2x).(x2 - x+ 3) + (a - 4). x2 - 6x + b

= (2x2 + 2x).(x2 - x+ 3) + (a - 4)(x2 - x + 3) + (a - 4)x - 3(a - 4) - 6x + b 

= (2x2 + 2x + a - 4).(x2 - x+ 3) + (a - 10)x - 3a +b + 12

=> 2x+ ax2 + b chia cho x- x+ 3 dư (a - 10)x - 3a + b + 12

Để phép chia là phép chia hết <=> (a - 10)x - 3a + b + 12 = 0 với mọi x

<=> a - 10 = 0 và -3a + b + 12 = 0 

<=> a =10 và b = 18

Vậy.....

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

a) Áp dụng định lý Bê-du về phép chia đa thức ta có:

Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)

Ta có:

\(f(3)=4\)

\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)

b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$

\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)

\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)

\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)

\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)

Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)

Để phép chia là chia hết thì :

\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)

5 tháng 11 2020

cau a dap an la 3 ban oi