K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Ta có:\(f\left(x\right)⋮4x-1\Rightarrow f\left(\dfrac{1}{4}\right)=0\)

\(f\left(x\right)⋮x+3\Rightarrow f\left(-3\right)=0\)

Ta có hpt:\(\left\{{}\begin{matrix}2\left(\dfrac{1}{4}\right)^2a+\dfrac{1}{4}b-3=0\\2.\left(-3\right)^2a-3b-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=11\end{matrix}\right.\)

30 tháng 3 2020

bạn ơi chỗ f(1/4)=0 làm sao ra được vậy, mình không hiểu

19 tháng 1 2017

Giao luu vấn đề mới

x=1, -2 là nghiệm

\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)

22 tháng 2 2016

đáp án là 12 đó bạn 

mình sử dụng tính chất của đa thức chia hết . lấy nghiệm của 4x-1 và x+3 

mỗi nghiệm mình được phương trình bậc nhất hai ẩn rồi mình sẽ được hệ phương trình 

giải hệ ta có được a và b

3 tháng 3 2016

violympic phải ko vậy ?

9 tháng 3 2016

a=2; b=11 => a+b=13

3 tháng 11 2019

Đa thức x- 3x + 2 có nghiệm \(\Leftrightarrow\)x- 3x + 2 = 0

\(\Leftrightarrow x^2-2x-x+2=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

1 và 2 là hai nghiệm của đa thức x- 3x + 2

Để f(x) = x+ ax+ bx - 1  chia hết cho x- 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x+ ax+ bx - 1

Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1

Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)

Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)

\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)

Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)

23 tháng 2 2016

đáp án là 13

mình lấy 2 nghiệm của 4x-1 và x+3 lần lượt thay vào đa thức  2ax2+bx-3 

ta được hệ phương trình giải hệ ta đươc a và b

nhớ k cho mình nha