Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
f(x) chia hết cho x^2+3x-1
=>(2a-b)=0 và 3b+a=0
=>a=b=0
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3
a,ta có:
f(1)= a.12+2.1+b=0
=> a+2+b=0
=> a+b=-2 (1)
f(-2)= a.(-2)2+2.(-2)+b=0
=> 4a - 4 + b=0
=> 4a+b=4 (2)
Trừ vế (2) cho vế (1) ,ta có:
3a=6
=>a= 2
thay a =2 vào (1), ta có: 2+b=-2 => b= -4
Vậy a=2, b=-4
b,Do g(x) có 2 nghiệm 1 và -1 nên:
g(1)=3.13 + a.12+b.1+c = 0
=> 3+a+b+c =0
=> a+b+c = -3 (1)
g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0
=> -3 +a -b+c =0
=> a-b+c=3 (2)
Trừ vế (1) cho vế (2), ta có:
2b=-6
=> b=-3
thay b=-3 vào (1), ta có:
a-3+c=-3
=> a+c=0
=> a+ 2a +1=0
=> 3a=-1
=> a= \(-\frac{1}{3}\)
Khi đó ta có: \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)
Vậy:...
Lời giải:
$3x=(a+b)x+2a-b, \forall x$
$\Rightarrow a+b=3; 2a-b=0$
$\Rightarrow a+b=3; 2a=b$
$\Rightarrow a+2a=3$
$\Rightarrow 3a=3\Rightarrow a=1$
$b=2a=2.1=2$
Vậy $a=1; b=2$