K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 1

Lời giải:
$3x=(a+b)x+2a-b, \forall x$

$\Rightarrow a+b=3; 2a-b=0$

$\Rightarrow a+b=3; 2a=b$

$\Rightarrow a+2a=3$

$\Rightarrow 3a=3\Rightarrow a=1$

$b=2a=2.1=2$

Vậy $a=1; b=2$

a: Bậc là 2

Hệ số cao nhất là -7

Hệ số tự do là 1

b: Thay x=2 vào A=0, ta được:

\(a\cdot2^2-3\cdot2-18=0\)

\(\Leftrightarrow4a=24\)

hay a=6

c: Ta có: C+B=A

nên C=A-B

\(=6x^2-3x-18-1-4x+7x^2\)

\(=13x^2-7x-19\)

25 tháng 3 2016

= em đang học lớp 6.

f(x) chia hết cho x^2+3x-1

=>(2a-b)=0 và 3b+a=0

=>a=b=0

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1

 

2 tháng 3 2019

a)      A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2

= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12

b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4  +  x2 + 2018 > 0 với mọi x

Vậy đa thức A(x) không có nghiệm.

c) Tìm được P(x) = -2x + 3

2 tháng 3 2019

cảm ơn Nguyển Huy Bảo An nha!!!

a,ta có:

 f(1)= a.12+2.1+b=0

=>       a+2+b=0

=>        a+b=-2 (1)

f(-2)= a.(-2)2+2.(-2)+b=0

 => 4a - 4 + b=0

=> 4a+b=4    (2)

Trừ vế (2) cho vế (1) ,ta có:

  3a=6

=>a= 2

thay a =2 vào (1), ta có: 2+b=-2 => b= -4

Vậy a=2, b=-4

b,Do g(x) có 2 nghiệm 1 và -1 nên:

g(1)=3.13 + a.12+b.1+c = 0

=> 3+a+b+c =0

=> a+b+c = -3 (1)

g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0

=> -3 +a -b+c =0

=> a-b+c=3    (2)

Trừ vế (1) cho vế (2), ta có:

2b=-6 

=> b=-3

thay b=-3 vào (1), ta có:

a-3+c=-3

=> a+c=0

=> a+ 2a +1=0

=> 3a=-1

=> a= \(-\frac{1}{3}\)

Khi đó ta có:  \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)

Vậy:...