Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\)
Để P(x)\(⋮\) Q(x)
\(\Rightarrow x^2+ax+b⋮x^2+x-2\)
\(\Rightarrow a=1;b=-2\)
Vậy.......
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
\(g\left(x\right)=x^3+x^2+x-4=x^2\left(x+1\right)+x+1-5\)
\(g\left(x\right)=\left(x+1\right)\left(x^2+1\right)-5\)
Vậy khi chia đa thức \(g\left(x\right)\) cho \(x+1\) có số dư là 5.
Đặt \(f\left(x\right)=ax^{3\: }+bx^2+c\)
Gọi g(x), h(x) lần lượt là thương khi chia đa thức f(x) cho đa thức x-2
và đa thức \(x^2-1\)
+ \(f\left(x\right)=\left(x-2\right)\cdot g\left(x\right)\) (1)
\(f\left(x\right)=\left(x^2-1\right)\cdot h\left(x\right)+2x+5\) (2)
Thay x = 2 vào (1) ta có :
\(f\left(2\right)=\left(2-2\right)\cdot g\left(x\right)=0\)
\(\Rightarrow8a+4b+c=0\)
+ Lần lượt thay \(x=1\) và x = -1 vào (2) ta có :
\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=2\cdot1+5=7\\-a+b+c=3\end{matrix}\right.\)
\(\Rightarrow2a=4\Rightarrow a=2\)( TM )
\(\Rightarrow\left\{{}\begin{matrix}4b+c=-16\\b+c=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-7\\c=12\end{matrix}\right.\) ( TM )
sao ko cat với em
bớt xàm đi Đỗ Mai Linh ơi.ng ta chat hay ko vc ng ta.đây là nơi để học chứ éo pk nơi để ns linh tinh trên này đâu