K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016
Câu a Mk chưa giải đc B) ta có x4+ax2+1= (x-1)2.P(x) Cho x=1, ta có 1+a+1=0 =>a=-2 C)ta có 2x2+ax+5=(x+3).Q(x)+41 Cho x=-3 => 23-3a=41 =>a=-6
23 tháng 12 2019

Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

a) Áp dụng định lý Bê-du về phép chia đa thức ta có:

Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)

Ta có:

\(f(3)=4\)

\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)

b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$

\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)

\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)

\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)

\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)

Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)

Để phép chia là chia hết thì :

\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)

5 tháng 11 2020

cau a dap an la 3 ban oi

 

14 tháng 11 2022

a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)

=>a-10=0

=>a=10

b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)

=>2-a=0 và b-a+1=0

=>a=2; b=a-1=2-1=1