Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng định lý Bê-du về phép chia đa thức ta có:
Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)
Ta có:
\(f(3)=4\)
\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)
b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$
\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)
\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)
\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)
\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)
Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)
Để phép chia là chia hết thì :
\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1