Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
Đa thức \(K\left(x\right)=6x^3-2x^2-ax-2\)chia hết cho nhị thức 2x - 3 khi \(\frac{3}{2}\)là nghiệm của K(x)
hay \(K\left(\frac{3}{2}\right)=0\Leftrightarrow6.\left(\frac{3}{2}\right)^3-2.\left(\frac{3}{2}\right)^2-\frac{3}{2}a-2=0\)
\(\Leftrightarrow\frac{81}{4}-\frac{9}{2}-\frac{3}{2}a-2=0\Leftrightarrow\frac{3}{2}a=\frac{55}{4}\)
\(\Leftrightarrow a=\frac{55}{6}\)
Vậy \(a=\frac{55}{6}\)thì \(6x^3-2x^2-ax-2\)chia hết cho 2x - 3
Gọi H(x) là thương trong phép chia P(x) cho D(x)
P(x) chia hết cho D(x) <=> P(x) = D(x).H(x)
<=> 2x3 + x2 - 2x + 2bx - a - b + 7 = ( x - 1 )( x + 2 ).H(x) (*)
Thế x = 1 vào (*) ta được -a + b + 8 = 0 <=> -a + b = -8 (1)
Thế x = -2 vào (*) ta được -a - 5b - 1 = 0 <=> -a - 5b = 1 (2)
Từ (1) và (2) ta có hệ \(\hept{\begin{cases}-a+b=-8\\-a-5b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{13}{2}\\b=-\frac{3}{2}\end{cases}}\)
Vậy ...
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
a: \(\Leftrightarrow k^3+3k^2-k^2+9+6⋮k+3\)
=>\(k+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(k\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
b: \(\Leftrightarrow x^4-3x^3+3x^2+ax+b⋮3x+4\)
=>\(x^4+\dfrac{4}{3}x^3-\dfrac{13}{3}x^3-\dfrac{52}{9}x^2+\dfrac{79}{9}x^2+\dfrac{316}{27}x+\left(a-\dfrac{316}{27}\right)x+\dfrac{4}{3}\left(a-\dfrac{316}{27}\right)-\dfrac{4}{3}\left(a-\dfrac{316}{27}\right)+b⋮3x+4\)
=>a-316/27=0 và b=0
=>a=316/27 và b=0
đặt
\(f\left(x\right)=6x^3-2x^2-ax-2\)
\(g\left(x\right)=2x-3\)
để \(f\left(x\right)⋮g\left(x\right)\)
thì f(x) =0 với nghiệm của g(x)
\(\Rightarrow f\left(\dfrac{3}{2}\right)=6.\left(\dfrac{3}{2}\right)^3-2.\left(\dfrac{3}{2}\right)^2-a\left(\dfrac{3}{2}\right)-2=0\\ \Leftrightarrow\dfrac{81}{4}-\dfrac{9}{2}-\dfrac{3a}{2}-2=0\\ \Leftrightarrow\dfrac{3a}{2}=-\dfrac{55}{4}\\ \Rightarrow a=-\dfrac{55}{6}\)