Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho P(x) = 2x4 + ax2+ bx + c
Tìm a,b,c để \(P\left(x\right)⋮\left(x+2\right)\) và chia cho x2-1 dư x
p(x)=2x4+ax +bx+c
vì \(P\left(x\right)⋮\left(x+2\right)\)nên P(-2)=0 hay\(32+4a-2b+c=0\leftrightarrow4a-2b+c=-32\)(1)
P(x) chia (x2-1) dư x =>P(x)-x\(⋮\)(x2-1)
=> 2x4+ax2+(b-1)x+c\(⋮\left(x^2-1\right)\)
gọi thương của phép chia trên là Q:
2x4+ax2+(b-1)x+c=(x-1)(x+1).Q
x=1\(\Rightarrow\)2+a+b-1+c=0 <=> a+b+c=-1(2)
x=-1 =>2+a+1-b+c=0 <=> a-b+c=-3(3)
từ (1),(2)và (3) ta có hệ\(\left\{\begin{matrix}4a-2b+c=-32\\a+b+c=-1\\a-b+c=-3\end{matrix}\right.\)....
giải hệ ta được \(\left\{\begin{matrix}a=-\frac{28}{3}\\b=1\\c=\frac{22}{3}\end{matrix}\right.\)
vậy ..
Ta có hpt:\(\left\{{}\begin{matrix}a+b+c=-16\\4a+2b+c=-23\\9a+3b+c=-36\end{matrix}\right.\)
\(\Rightarrow a=-3;b=2;c=-15\). Vậy Q(x)=\(x^3-3x^2+2x-15\)
Theo đlí Bezu số dư Q(x) cho (x-4)=f(4)=\(4^3-3.4^2+2.4-15=9\)
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
Đặt f(x) = \(2x^4+ax^2+bx+c\)
Áp dụng định lí Be - du ta có: r = f(x)
=> \(\left\{{}\begin{matrix}r=f\left(2\right)\\r=f\left(1\right)\\r=f\left(-1\right)\end{matrix}\right.\)
Thay x = 2; 1; -1 lần lượt vào f(x) ta được:
\(\left\{{}\begin{matrix}f\left(2\right)=32+4a+2b+c\\f\left(1\right)=2+a+b+c\\f\left(-1\right)=2+a-b+c\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}f\left(x\right)⋮\left(x-2\right)\\f\left(x\right)chia\left(x^2-1\right)dư2x\end{matrix}\right.\) => \(\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=2\\2+a-b+c=-2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=0\left(2\right)\\a-b+c=-4\left(3\right)\end{matrix}\right.\)
Trừ (2) cho (3) ta được: \(2b=4\) => b = 2
=> \(\left\{{}\begin{matrix}4a+c=-36\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ (4) cho (5) ta được: \(3a=-34\) => a = \(\dfrac{-34}{3}\) => c = \(\dfrac{28}{3}\)
Vậy a = \(\dfrac{-34}{3}\) ; b = 2 ; c = \(\dfrac{28}{3}\)
P/s: Hi vọng bn hiểu!
c.ơn bn nh`