Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x5=y6⇒x20=y24x5=y6⇒x20=y24 (1)(1)
y8=z7=y24=z21y8=z7=y24=z21 (2)(2)
Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3
⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63
Vậy x=60;y=72x=60;y=72 và z=63
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2x+y-z}{2\cdot8+5-6}=\dfrac{30}{15}=2\)
Do đó: x=16; y=10; z=12
a)\(x.x=\frac{y}{-3}.\frac{y}{-3}=\frac{z}{4}.\frac{z}{4}=\frac{x^2+y^2-z^2}{1+9-16}=\frac{6}{-6}=-1\)
không tồn tại vì x.x>=0
b)\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)
\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{z}{8}=\frac{y}{6}\)
Suy ra \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}=\frac{x-y+z}{15-6+8}=\frac{10}{17}\)
\(x=15.\frac{10}{17}=\frac{150}{17}\)
\(y=6.\frac{10}{17}=\frac{60}{17}\)
c) \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{14}{2}=7\)
x=7.5=35; y=3.7=21
d) \(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
x=2.2=4; y=2.5=10
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
a) �2=�5=�7;�+�+�=562x=5y=7z;x+y+z=56
�2=�5=�7=�+�+�2+5+7=5614=42x=5y=7z=2+5+7x+y+z=1456=4
⇒{�=4.2=8�=4.5=20�=4.7=28⇒⎩⎨⎧x=4.2=8y=4.5=20z=4.7=28
b) �1,1=�1,3=�1,4(1);2�−�=5,51,1x=1,3y=1,4z(1);2x−y=5,5
(1)⇒2�−�1,1.2−1,3=5,50,9(1)⇒1,1.2−1,32x−y=0,95,5
⇒⎩⎨⎧x=1,1.0,95,5=0,96,05y=1,3.0,95,5=0,97,15z=1,11,4.x=1,11,4.0,96,05=0,998,47
d) �2=�3=�5;���=−302x=3x=5z;xyz=−30
�2=�3=�5=���2.3.5=−3030=−12x=3x=5z=2.3.5xyz=30−30=−1
⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5⇒⎩⎨⎧x=2.(−1)=−2y=3.(−1)=−3z=5.(−1)=−5
Ta có: \(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{6}\)
\(\Leftrightarrow\dfrac{2x}{16}=\dfrac{y}{5}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{16}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2x+y-z}{16+5-6}=\dfrac{-30}{15}=-2\)
\(\Leftrightarrow\dfrac{x}{8}=-2\Leftrightarrow x=-16\)
\(\Leftrightarrow\dfrac{y}{5}=-2\Leftrightarrow y=-10\)
\(\Leftrightarrow\dfrac{z}{6}=-2\Leftrightarrow z=-12\)
Vậy \(x=-16;y=-10;z=-12\)
Trả lời:
Ta có: \(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{6}\) với 2x + y - z = -30
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{6}\) = \(\dfrac{2x+y-z}{2.8+5-6}\) = \(\dfrac{-30}{15}\) = -2
=> x = 8 . (-2) = -16;
y = 5 . (-2) = -10
z = 7 . (-2) = -14
CHÚC BN HC TỐT :)))