Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. x4 - x2 - 2x - 1
=x4-(x2+2x+1)
=x4-(x+1)2
=(x2-x-1)(x2+x+1)
d. ( x2 + 3x + 1 ) ( x2 + 3x - 3 ) - 5
Đặt x2+3x=y
=> (y+1)(y-3)-5=y2-2y-8=(y-1)2-9
=(y-4)(y+2)
=(x2+3x-4)(x2+3x+2)=(x-1)(x+4)(x+1)(x+2)
\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=x-3-\) \(\left(x+4\right)\)\(\)
<=> \(4x^2-4x-3x^2+15-x^2=x-3-x-4\)
<=> \(-4x+15=-7\)
<=> \(x=\frac{11}{2}\)
\(\left(2x^2-3x+1\right)\left(x^2-5\right)-\left(x^2-x\right)\left(2x^2-x-10\right)=5\)
<=> \(2x^4-10x^2-3x^3+15x+x^2-5-\left(2x^4-x^3-10x^2-2x^3+x^2+10x\right)=5\)
<=> \(2x^4-10x^2-3x^3+15x+x^2-5-2x^4+x^3+10x^2+2x^3-x^2-10x=5\)
<=> \(5x-5=5\)
<=> \(5x=10\)
<=> \(x=2\)
a)
\((6x+5)^2(3x+2)(x+1)-35\)
\(=(36x^2+60x+25)(3x^2+5x+2)-35\)
\(=[12(3x^2+5x+2)+1](3x^2+5x+2)-35\)
\(=(12a+1)a-35=12a^2+a-35\) (đặt \(3x^2+5x+2=a)\)
\(=4a(3a-5)+7(3a-5)=(4a+7)(3a-5)\)
\(=(12x^2+20x+15)(9x^2+15x+1)\)
b)
\(8(4x+1)(2x-3)(4x-3)(x+1)-130\)
\(=8[(4x+1)(4x-3)][(2x-3)(x+1)]-130\)
\(=8(16x^2-8x-3)(2x^2-x-3)-130\)
\(=8(8a+21)a-130\) (Đặt \(2x^2-x-3=a\) )
\(=64a^2+168a-130=2(8a-5)(4a+13)\)
\(=2(8x^2-4x+1)(16x^2-8x-29)\)
c)
\((4x+1)(12x-1)(3x+2)(x+1)-4\)
\(=[(4x+1)(3x+2)][(12x-1)(x+1)]-4\)
\(=(12x^2+11x+2)(12x^2+11x-1)-4\)
\(=(a+2)(a-1)-4\) (đặt \(a=12x^2+11x\) )
\(=a^2+a-6=(a-2)(a+3)\)
\(=(12x^2+11x-2)(12x^2+11x+3)\)
d)
\((x+2)(x+3)^2(x+4)-12\)
\(=[(x+2)(x+4)](x+3)^2-12\)
\(=(x^2+6x+8)(x^2+6x+9)-12\)
\(=a(a+1)-12\) (Đặt \(x^2+6x+8=a\) )
\(=a^2+a-12=(a-3)(a+4)=(x^2+6x+5)(x^2+6x+12)\)
\(=(x+1)(x+5)(x^2+6x+12)\)
a) \(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+4\right)\left(x-4\right)=21\)
\(\Leftrightarrow x^3-27-x.\left(x^2-16\right)=21\) \(\Leftrightarrow x^3-27-x^3+16x=21\)
\(\Leftrightarrow16x=21+27\) \(\Leftrightarrow16x=48\) \(\Leftrightarrow x=3\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x.\left(x^2+2\right)=4\)
\(\Leftrightarrow x^3+8-x^3-2x=4\) \(\Leftrightarrow-2x=4-8\) \(\Leftrightarrow-2x=-4\) \(\Leftrightarrow x=2\)
Ta có:
\(E=x^3-y^3-36xy\)
\(E=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(E=12\left(x^2+xy+y^2\right)-36xy\) ( vì x - y =12 )
\(E=12\left(x^2+y+y^2-3xy\right)\)
\(E=12\left(x^2-2xy+y^2\right)\)
\(E=12\left(x-y\right)^2\)
\(E=12\cdot12^2\) ( vì x - y =12 )
\(E=12^3=1728\)
Hok tốt!
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)