Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=x^2+16x+64+2(x^2+6x-16)+x^2-4x+4
=2x^2+12x+68+2x^2+12x-32
=4x^2+24x+36
\(\left(x+8\right)\left(x+8\right)-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2\)
\(=100\)
`B.S={x|x<-8/5}`
`-5x-8=|5x+8|`
`<=>-(5x+8)=|5x+8|`
`<=>5x+8<=0`
`<=>x<=-8/5`
`B.S={x|x<=-8/5}`
`-5x-8=|5x+8|`
`<=>-(5x+8)=|5x+8|`
`<=>5x+8<=0`
`<=>x<=-8/5`
Ta có: \(\left(-8+x^2\right)\left(-8+x^2\right)\left(-8+x^2\right)\left(-8+x^2\right)\left(-8+x^2\right)=1\)
\(\Leftrightarrow\left(-8+x^2\right)^5=1\)
\(\Leftrightarrow x^2-8=\pm1\)
+ \(x^2-8=1\)\(\Leftrightarrow\)\(x^2=9\)\(\Leftrightarrow\)\(x=\pm3\)
+ \(x^2-8=-1\)\(\Leftrightarrow\)\(x^2=7\)\(\Leftrightarrow\)\(x=\pm\sqrt{7}\)
Vậy \(S=\left\{-3,-\sqrt{7},\sqrt{7},3\right\}\)
\(x^8-y^8=\left(x^4-y^4\right)\left(x^4+y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)⋮\left(x-y\right)\)và\(\left(x+y\right)\)(đpcm)
thêm x;y thuộc z nhé
\(x^8-y^8=\left(x^4\right)^2-\left(y^4\right)^2=\left(x^4-y^4\right)\left(x^4+y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
vì \(x-y⋮x-y;x,y\in Z\Rightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)⋮x-y\Rightarrow x^8-y^8⋮x-y\)
\(x+y⋮x+y;x,y\in Z\Rightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)⋮x+y\Rightarrow x^8-y^8⋮x+y\)
đề là gì
\(x\in Z\)là hợp lí nhất