Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0
a) 17 - 14( x + 1 ) = 13 - 4( x + 1 ) - 5( x - 3 )
<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15
<=> 17 - 14 - 13 + 4 - 15 = -4x - 5x + 14x
<=> -21 = 5x
<=> x = -21/5
b) 7( 4x + 3 ) - 4( x - 1 ) = 15( x + 0, 75 ) + 7
<=> 28x + 21 - 4x + 4 = 15x + 45/4 + 7
<=> 28x - 4x - 15x = 45/4 + 7 - 21 - 4
<=> 9x = -27/4
<=> x = -3/4
c) 3x( x + 1 ) - 2x( x + 2 ) = x2 - 1
<=> 3x2 + 3x - 2x2 - 4x = x2 - 1
<=> 3x2 + 3x - 2x2 - 4x - x2 = -1
<=> -x = -1
<=> x = 1
a, \(17-14\left(x+1\right)=13-4\left(x+1\right)-5\left(x-3\right)\)
\(\Leftrightarrow17-14x-14=13-4x-4-5x+15\)
\(\Leftrightarrow3-14x=24-9x\Leftrightarrow3-14x-24+9x=0\)
\(\Leftrightarrow-21-5x=0\Leftrightarrow5x=-21\Leftrightarrow x=-\frac{21}{5}\)
b, \(7\left(4x+3\right)-4\left(x-1\right)=15\left(x+0,75\right)+7\)
\(\Leftrightarrow28x+21-4x+1=15x+\frac{45}{4}+7\)
\(\Leftrightarrow9x=-\frac{27}{4}\Leftrightarrow x=-\frac{3}{4}\)
c, \(3x\left(x+1\right)-2x\left(x+2\right)=x^2-1\)
\(\Leftrightarrow3x^2+3x-2x^2-4x=x^2-1\)
\(\Leftrightarrow x^2-x=x^2-1\Leftrightarrow x=1\)
\(B=\left|x-4\right|\left(2-\left|x-4\right|\right)\ge0\forall x\)
Dấu '=' xảy ra khi x=4
d) \(2x^2+5x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\) \(\left(a+b+c=1\right)\)
\(\dfrac{x}{15}\)+\(\dfrac{x}{12}\)=4/1+1/2=9/2
=>x(\(\dfrac{1}{15}\)+\(\dfrac{1}{12}\))=9/2
=>x\(\cdot\)\(\dfrac{3}{20}\)=9/2
=>x=9/2:3/20=30
Vậy x=30
\(\dfrac{x}{15}+\dfrac{x}{12}=\dfrac{9}{2}\Rightarrow\left(\dfrac{1}{15}+\dfrac{1}{12}\right)x=\dfrac{9}{2}\)
\(\Rightarrow\left(\dfrac{12+18}{180}\right)x=\dfrac{9}{2}\Rightarrow\dfrac{30}{180}x=\dfrac{9}{2}\Rightarrow\dfrac{1}{6}x=\dfrac{9}{2}\Rightarrow x=\dfrac{9}{2}.6=27\)
m) \(\dfrac{1}{4}x^2-4x^2=\left(\dfrac{1}{2}x-2x\right)\left(\dfrac{1}{2}x+2x\right)\)
n) \(\dfrac{4}{49}-4x^2=\left(\dfrac{2}{7}-2x\right)\left(\dfrac{2}{7}+2x\right)\)
o) \(\left(x-3\right)\left(x+3\right)=x^2-9\)
\(\dfrac{x^2+3x-4}{x-1}=\dfrac{x^2+4x-x-4}{\left(x-1\right)}=\dfrac{\left(x+4\right)\left(x-1\right)}{x-1}=x+4\)
Ta có: \(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x+y\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)+2xy\left(x+y\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)
\(\left(x+7\right)\left(x-4\right)=2\left(x-4\right)\)
\(\Leftrightarrow\left(x+7\right)\left(x-4\right)-2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+7-2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-5\end{cases}}\)
Vậy : \(x\in\left\{4,-5\right\}\)
\(\left(x+7\right)\left(x-4\right)=2\left(x-4\right)\)
\(\Leftrightarrow x^2-4x+7x-28=2x-8\)
\(\Leftrightarrow x^2+3x-28=2x-8\)
\(\Leftrightarrow x^2+3x-28-2x+8=0\)
\(\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{4;-5\right\}\)