K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2021

\(\Leftrightarrow8x^3-36x^2+51x-22+2x-3-\sqrt[3]{3x-5}=0\)

\(\Leftrightarrow8x^3-36x^2+51x-22+\dfrac{8x^3-36x^2+51x-22}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}=0\)

\(\Leftrightarrow\left(8x^3-36x^2+51x-22\right)\left(1+\dfrac{1}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}\right)=0\)

\(\Leftrightarrow8x^3-36x^2+51x-22=0\)

\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)

\(\Leftrightarrow...\)

3 tháng 3 2021

Cho mk hỏi chỗ này ạ

NV
10 tháng 2 2020

\(\Leftrightarrow x\left(x^6-14x^4+49x^2-36\right)=0\)

\(\Leftrightarrow x\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=1\\x^2=4\\x^2=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=\pm2\\x=\pm3\end{matrix}\right.\)

TL
2 tháng 2 2020

Cho em hỏi Nguyễn Việt Lâm có phải gv không ạ?

22 tháng 7 2016

3x−53=8x3−36x2+53x−25

PT⇔3x−53=(2x−3)3−(x−2)

Đặt y=3x−53⇒{y3=3x−5=(2x−3)+(x−2)y=(2x−3)3−(x−2)

⇒y3+y=(2x−3)3+(2x−3) (1)
Xét hàm: f(t)=t3+t
có f′(t)=3t2+1>0 nên là hàm đồng biến (2)
Từ (1) và (2) suy ra y=2x−3
Đến đây thay vào , giải PT bậc 3

Chỉ bk lm trừ, ko bk lm cộng

NV
16 tháng 3 2022

Với \(x=0\) ko là nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\)

\(\Rightarrow2x^2+\left(m+1\right)x-36+\dfrac{2\left(m+1\right)}{x}+\dfrac{8}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{4}{x^2}+4\right)+\left(m+1\right)\left(x+\dfrac{2}{x}\right)-44=0\)

\(\Leftrightarrow2\left(x+\dfrac{2}{x}\right)^2+\left(m+1\right)\left(x+\dfrac{2}{x}\right)-44=0\)

Đặt \(x+\dfrac{2}{x}=t\Rightarrow x^2-tx+2=0\) (2)

(2) có nghiệm khi \(\Delta=t^2-8\ge0\) (1 nghiệm khi dấu "=" xảy ra, còn lại là 2 nghiệm)

Khi đó pt trở thành:

\(f\left(t\right)=2t^2+\left(m+1\right)t-44=0\) (3)

Do \(ac=-88< 0\) nên (3) luôn có 2 nghiệm pb trái dấu

Phương trình đã cho có đúng 2 nghiệm thực khi:

TH1: (3) có 2 nghiệm pb sao cho \(t^2=8\) , thế vào (1) ko có m thỏa mãn

TH2: (3) có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1^2>8\\t_2^2< 8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t_1< -2\sqrt{2}< t_2< 2\sqrt{2}\\-2\sqrt{2}< t_1< 2\sqrt{2}< t_2\end{matrix}\right.\)

\(\Leftrightarrow f\left(-2\sqrt{2}\right).f\left(2\sqrt{2}\right)< 0\)

\(\Leftrightarrow\left[-2\sqrt{2}\left(m+1\right)-28\right]\left[2\sqrt{2}\left(m+1\right)-28\right]< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{2}\left(m+1\right)>28\\2\sqrt{2}\left(m+1\right)< -28\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>7\sqrt{2}-1\\m< -7\sqrt{2}-1\end{matrix}\right.\)

19 tháng 9 2016

\(hpt\Leftrightarrow\begin{cases}y=\frac{60x^2}{36x^2+25}\\z=\frac{60y^2}{36y^2+25}\\x=\frac{60z^2}{36z^2+25}\end{cases}\)

Từ hệ suy ra x,y,z không âm. Nếu x=0 thì y=z=0 suy ra (0;0;0) là nghiệm của hệ phương trình.

Nếu x>0 thì y>0, z>0. Xét hàm số \(f\left(t\right)=\frac{60t^2}{36t^2+25},t>0\)

Ta có: \(f'\left(t\right)=\frac{3000t}{\left(36t^2+25\right)^2}>0\) với mọi t>0

Do đó \(f\left(t\right)\) đồng biến trên khoảng \(\left(0;+\infty\right)\)

Hệ pt đc viết lại \(\begin{cases}y=f\left(x\right)\\z=f\left(y\right)\\x=f\left(z\right)\end{cases}\)

Từ tính đồng biến của f(x) suy ra x=y=z. Thay vào hệ ta được

x(36x2-60x+25)=0. Chọn \(x=\frac{5}{6}\)

Vậy tập nghiệm của hệ pt là \(\left\{\left(0;0;0\right);\left(\frac{5}{6};\frac{5}{6};\frac{5}{6}\right)\right\}\)

19 tháng 9 2016

Khuyến khích cho sự "chơi trội" của you ^^ ahihi

NV
2 tháng 3 2021

1. ĐKXĐ:...

\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
2 tháng 3 2021

2.

ĐKXĐ:...

Ta có:

\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)

Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)

\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)

a: \(3x^3-18x^2+36x-32=0\)

\(\text{Δ}=\left(-18\right)^2-3\cdot3\cdot36=0\)

=>Phương trình có nghiệm duy nhất là:

\(x=\dfrac{18+\sqrt[3]{\left(-18\right)^3-27\cdot3^2\cdot\left(-32\right)}}{3\cdot3}\)

=>A khác rỗng

b: \(\text{Δ}=18^2-3\cdot2\cdot54=0\)

=>Phương trình có nghiệm duy nhất là:

\(x=\dfrac{-18+\sqrt[3]{18^3-27\cdot2\cdot49}}{3\cdot2}\)

=>B khác rỗng

a: \(3x^3-18x^2+36x-32=0\)

\(\text{Δ}=\left(-18\right)^2-3\cdot3\cdot36=0\)

=>Phương trình có nghiệm duy nhất là:

\(x=\dfrac{18+\sqrt[3]{\left(-18\right)^3-27\cdot3^2\cdot\left(-32\right)}}{3\cdot3}\)

=>A khác rỗng

b: \(\text{Δ}=18^2-3\cdot2\cdot54=0\)

=>Phương trình có nghiệm duy nhất là:

\(x=\dfrac{-18+\sqrt[3]{18^3-27\cdot2\cdot49}}{3\cdot2}\)

=>B khác rỗng