K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{358}{65}\)

\(\hept{\begin{cases}\frac{x^2}{25}=\frac{358}{65}\\\frac{y^2}{49}=\frac{358}{65}\\\frac{z^2}{9}=\frac{358}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\frac{1790}{13}\\y^2=\frac{17542}{65}\\z^2=\frac{3222}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1790}{13}}\\y=\sqrt{\frac{17542}{65}}\\z=\sqrt{\frac{3222}{65}}\end{cases}}\)

Vậy ...

23 tháng 11 2017

có đúng ko bn

23 tháng 6 2017

a) Ta có : x/3 = y/2 -> x/15 = y/ 10
               x/5 = z/7 -> x/15 = z/21 
=> x/15 = y/10 = z/21
và x+y+z= 184
Áp dụng tính chất dãy tỉ số bằng nhau ta có : 
x/15 = y/10 = z/21 = x+y+z/ 184 = 15+10+21/ 184 = 4
Do đó: x= 60 ; y = 40 ; z = 84

 

20 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(=\frac{x+y-z}{2+3-4}\)\(=\frac{2}{1}=2\)

=> x = 2.2 = 4

    y = 3.2 = 6

  z = 4.2 = 8

7 tháng 12 2015

Ta có

\(x+\frac{2}{7}=y-\frac{3}{5}=\frac{z}{3}\)

<=>\(\frac{7x+2}{7}=\frac{5y-3}{5}=\frac{z}{3}\)

<=>\(\frac{5\left(7x+2\right)}{35}=\frac{7\left(5y-3\right)}{35}=\frac{35z}{105}\)

<=>\(\frac{35x+10}{35}=\frac{35y-21}{35}=\frac{35z}{105}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{35x+10}{35}=\frac{35y-21}{35}=\frac{35z}{105}=\frac{35x+10+35y-21-35z}{35+35-105}=\frac{35\left(x+y-z\right)-11}{-35}\)

\(=\frac{35.\left(-17\right)-11}{-35}=\frac{606}{35}\)

Thay vô là tính ra x,y,z

Mà theo mình hình như là sai đề bạn ak.Kết quả không đẹo cho lắm

6 tháng 11 2017

đề bài là j vậy

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

14 tháng 12 2019

Sửa lại đề là \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\)

CM: \(\frac{x-y}{4}=\frac{y-z}{5}.\)

Ta có: \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\)

\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(x+z\right)}{30}.\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}.\)

+ Xét \(\frac{x+z}{10}=\frac{y+z}{6}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x+z}{10}=\frac{y+z}{6}=\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\) (1).

+ Xét \(\frac{x+y}{15}=\frac{x+z}{10}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x+y}{15}=\frac{x+z}{10}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 10 2016

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

7 tháng 10 2016

nè Khoa ơi câu b có đề ko zợ?

29 tháng 8 2017

bài 1

a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow\frac{5x}{5.7}=\frac{2y}{2.3}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=3.7=21;y=3.3=9\)

Bài dưới tướng tự nhé

26 tháng 7 2017

Bài 1:

Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)

Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)

         \(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)

               \(\frac{y}{7}=3\Rightarrow y=3.7=21\)

                \(\frac{z}{5}=3\Rightarrow z=3.5=15\)

Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15

thank trc ^~^