Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(x+\frac{2}{7}=y-\frac{3}{5}=\frac{z}{3}\)
<=>\(\frac{7x+2}{7}=\frac{5y-3}{5}=\frac{z}{3}\)
<=>\(\frac{5\left(7x+2\right)}{35}=\frac{7\left(5y-3\right)}{35}=\frac{35z}{105}\)
<=>\(\frac{35x+10}{35}=\frac{35y-21}{35}=\frac{35z}{105}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{35x+10}{35}=\frac{35y-21}{35}=\frac{35z}{105}=\frac{35x+10+35y-21-35z}{35+35-105}=\frac{35\left(x+y-z\right)-11}{-35}\)
\(=\frac{35.\left(-17\right)-11}{-35}=\frac{606}{35}\)
Thay vô là tính ra x,y,z
Mà theo mình hình như là sai đề bạn ak.Kết quả không đẹo cho lắm
Sửa lại đề là \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\)
CM: \(\frac{x-y}{4}=\frac{y-z}{5}.\)
Ta có: \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\)
\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(x+z\right)}{30}.\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}.\)
+ Xét \(\frac{x+z}{10}=\frac{y+z}{6}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x+z}{10}=\frac{y+z}{6}=\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\) (1).
+ Xét \(\frac{x+y}{15}=\frac{x+z}{10}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x+y}{15}=\frac{x+z}{10}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right).\)
Chúc bạn học tốt!
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
bài 1
a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow\frac{5x}{5.7}=\frac{2y}{2.3}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=3.7=21;y=3.3=9\)
Bài dưới tướng tự nhé
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{358}{65}\)
\(\hept{\begin{cases}\frac{x^2}{25}=\frac{358}{65}\\\frac{y^2}{49}=\frac{358}{65}\\\frac{z^2}{9}=\frac{358}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\frac{1790}{13}\\y^2=\frac{17542}{65}\\z^2=\frac{3222}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1790}{13}}\\y=\sqrt{\frac{17542}{65}}\\z=\sqrt{\frac{3222}{65}}\end{cases}}\)
Vậy ...
có đúng ko bn