Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x}{19}=\frac{y}{21}\) và 2x - y = 34
Ta có : \(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Vậy : \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}\)
\(b,\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z = 60
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}\)
Theo đề bài ta có :
\(\frac{x}{5}=\frac{y}{-3};x^2+y=34\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x^2+y}{25+\left(-3\right)}=\frac{34}{22}=\frac{17}{11}\)
\(\Rightarrow\)\(x=\frac{17}{11}.5=\frac{85}{11}\)
\(y=\frac{17}{11}.3=\frac{51}{11}\)
tớ quên cậu sửa dùm mình cái chỗ
\(y=\frac{17}{11}.-3=\frac{-51}{11}\)
hơi vội nên quên :)
Bài làm :
\(\text{Đặt : }\frac{x}{5}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=-3k\end{cases}}\)
Vì x2 + y = 34 nên :
\(\left(5k\right)^2+\left(-3k\right)=34\Leftrightarrow25k^2-3k=34\)
Đoạn này hình như sai để rồi bạn ạ !
a)\(\frac{x}{5}=\frac{y}{-3}\Rightarrow\frac{x^2+y}{5^2.-3}=\frac{34}{-125}\)
\(\Rightarrow\frac{x}{5}=-\frac{34}{125}\Rightarrow x=-\frac{34}{125}.5=-\frac{34}{25}\)
\(\Rightarrow\frac{y}{-3}=-\frac{34}{125}\Rightarrow y=-\frac{34}{125}.-3=\frac{102}{125}\)
b)\(4x=-5y\Rightarrow\frac{4x}{20}=-\frac{5y}{20}\Rightarrow\frac{x}{5}=\frac{y}{-4}=K\)
\(\frac{x}{5}=K\Rightarrow x=5K;\frac{y}{-4}=K\Rightarrow y=-4K\)
\(x.y=-80\)
\(5K.-4K=-80\)
\(K^2.\left(-4.5\right)=-80\)
\(K^2=-80:\left(-20\right)\)
\(K^2=4\Rightarrow K=2\)
\(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{-4}=2\Rightarrow y=-8\)
a, Đặt \(\hept{\begin{cases}x=5k\\y=-3k\end{cases}}\)Theo bài ra ta có : \(x^2+y=34\)
\(\left(5k\right)^2-3k=34\Leftrightarrow25k^2-3k=34\Leftrightarrow k\left(25k-3\right)=34\)
\(\Leftrightarrow\orbr{\begin{cases}k=34\\25k-3=34\end{cases}\Leftrightarrow\orbr{\begin{cases}k=34\\k=\frac{37}{25}\end{cases}}}\)
b, Theo bài ra ta có : \(4x=-5y\Leftrightarrow\frac{x}{-5}=\frac{y}{4}\)
Đặt \(\hept{\begin{cases}x=-5k\\y=4k\end{cases}}\)Theo bài ra ta có : \(xy=-80\)
\(\Leftrightarrow-5k.4k=-80\Leftrightarrow-20k^2=-80\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Với k = 2 : \(\hept{\begin{cases}x=-10\\y=8\end{cases}}\)Với k = -2 \(\hept{\begin{cases}x=10\\y=-8\end{cases}}\)
Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)
Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)
\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)
Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)
\(y=4.\sqrt[3]{\frac{1}{4}}\)
Câu 3 4 5 tương tư:
câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))
a) Ta có: \(3x=5y\) tương đương với \(\frac{x}{5}=\frac{y}{3}\)
=> \(\frac{x}{5}=\frac{y}{3}\) với \(x-2y=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-2y}{5-6}=\frac{10}{-1}=-10\)
=> \(x=-50\)
=> \(y=-30\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
Suy ra :
+) \(\frac{x}{7}=2\Leftrightarrow x=14\)
+) \(\frac{y}{13}=2\Leftrightarrow y=26\)
Vậy x = 14 ; y = 26
b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Suy ra :
+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)
+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)
Vậy x = - 51 ; y = - 9
c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Suy ra :
+) \(\frac{x}{19}=2\Leftrightarrow x=38\)
+) \(\frac{y}{21}=2\Leftrightarrow y=42\)
Vậy x = 38 ; y = 42
d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)
Vậy x =\(\pm\)6 ; y =\(\pm\)8
a,AD t/c DTS bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)
b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
AD t/c DTS bằng nhua ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)
c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
AD t/c DTS bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)
d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k;y^2=16k\)
\(\Rightarrow x^2+y^2=9k+16k=25k=100\)
\(\Rightarrow k=4\)
\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
\(\frac{x}{5}=\frac{y}{-3}\) và \(x^2+y^2=34\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-3}=\frac{x^2+y^2}{\left(5\right)^2+\left(-3\right)^2}=\frac{34}{25+9}=\frac{34}{34}=1\)
\(\Rightarrow\) \(\frac{x}{5}=1\) \(\Rightarrow\)\(x=5\)
\(\frac{y}{-3}=1\) \(\Rightarrow\) \(y=-3\)
Vậy x = 5 , y = -3
ta có:
\(\frac{x}{5}=\frac{y}{-3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{34}\)
\(=\frac{34}{34}=1\)
\(\frac{x^2}{25}=1\Leftrightarrow x^2=25\Rightarrow x=5\)hoặc \(x=-5\)
\(\frac{y^2}{9}=1\Leftrightarrow y^2=9\Rightarrow y=3\)hoặc \(y=-3\)
Chúc bn hok tốt!!!!! ^-^