K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2021

\(\Leftrightarrow x^5-1=4x^4+4x^3+4x^2+4x+4\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow x=5\)

15 tháng 8 2015

a/ = -4x+ 16x7 - 28x6 +12x5

b/ = -12x3y4 - 8x5y3 + 16x7y2

15 tháng 8 2015

a) \(-4x^5\cdot\left(x^3-4x^2+7x-3\right)=-4x^8+16x^7-28x^6+12x^5\)

b) \(4x^3y^2\cdot\left(-2x^2y+4x^4-3y^2\right)=-6x^5y^3+16x^7y^2-12x^3y^4\)

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

8 tháng 4 2017

Ta có tổng quát: \(\left(ax^2+bx+c\right)\)\(\left(mx^2+nx+p\right)\)\(\circledast\)

-Nhân ra ta được: \(amx^4+\left(an+bm\right)x^3+\left(ap+bn+cm\right)x^2+\left(bp+cn\right)x+cp\)

-Áp dụng phương pháp hệ số bất định, ta có:

am=1

an+bm=4 (1)

ap+bn+cm=6 (2)

bp+cn=4 (3)

cp=5

-Xét a=m=1 và c=1, p=5

thay vào (1), ta được: n+b=4 (4)

thay vào (3), ta được: n+5b=4 (5)

từ (4),(5)\(\Rightarrow\)n=4 và b=0

giờ thay tất cả vào phương trình (3), ta được: 5+0+1=6 (T/M)

\(\Rightarrow\)Thay vào\(\circledast\), ta được: \(\left(x^2+1\right)\left(x^2+4x+5\right)\)

8 tháng 4 2017

Cách 2: Ta tách \(6x^2\) thành \(5x^2+x^2\)

ta được: \(x^4+4x^3+5x^2+x^2+4x+5\)

\(\Leftrightarrow x^2\left(x^2+4x+5\right)+\left(x^2+4x+5\right)\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\)

1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)

=>-8x^2+11x-10=0

=>\(x\in\varnothing\)

2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)

=>-14x+5=x-2

=>-15x=-7

=>x=7/15

3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)

=>10x=-17

=>x=-17/10

4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)

=>18x+3=7x-3

=>11x=-6

=>x=-6/11

5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)

\(\Leftrightarrow3x^2+2x+10-4+x=0\)

=>3x^2+3x+6=0

hay \(x\in\varnothing\)

a: \(B=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{10}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)

b: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)

\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)

\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)

c: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)

\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=\dfrac{-5}{2}\)

d: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)

\(=\dfrac{1-4x^2}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)

\(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x+4}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3\left(2x+1\right)}{x+4}\)

12 tháng 12 2018

\(a,3\left(x+4\right)-x^2-4x\)

\(=3\left(x+4\right)-\left(x^2+4x\right)\)

\(=3\left(x+4\right)-x\left(x+4\right)\)

\(=\left(3-x\right)\left(x+4\right)\)

\(a,3\left(x+4\right)-x^2-4x\)

\(=3\left(x+4\right)-\left(x^2+4x\right)\)

\(=3\left(x+4\right)-x\left(x+4\right)\)

\(=\left(3-x\right),\left(x+4\right)\)

18 tháng 8 2015

a/ \(\Rightarrow9\left(16x^2+24x+9\right)=16\left(9x^2-30x+25\right)\)

\(\Rightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Rightarrow696x=319\Rightarrow x=\frac{11}{24}\)