Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}=-3\\ \Rightarrow\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}+3=0\\ \Rightarrow\left(\dfrac{x+5}{2005}+1\right)+\left(\dfrac{x+6}{2004}+1\right)+\left(\dfrac{x+7}{2003}+1\right)=0\\ \Rightarrow\dfrac{x+2010}{2005}+\dfrac{x+2010}{2004}+\dfrac{x+2010}{2003}=0\\ \Rightarrow\left(x+2010\right)\left(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\\ \Rightarrow x+2010=0\left(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\ne0\right)\\ \Rightarrow x=-2010\)
\(\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}=-3\)
=>\(\left(\dfrac{x+5}{2005}+1\right)+\left(\dfrac{x+6}{2004}+1\right)+\left(\dfrac{x+7}{2003}+1\right)=0\)
=>\(\left(x+2010\right)\left(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
=>\(x+2010=0\)(do\(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\)khác 0)
=>x=-2010
Vậy...
\(\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
<=> \(\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
<=>\(\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
<=>x+2010=0
<=>x=-2010
Giải:
\(\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}=-3\)
\(\Leftrightarrow\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}+3=0\)
\(\Leftrightarrow\dfrac{x+5}{2005}+1+\dfrac{x+6}{2004}+1+\dfrac{x+7}{2003}+1=0\)
\(\Leftrightarrow\dfrac{x+5+2005}{2005}+\dfrac{x+6+2004}{2004}+\dfrac{x+7+2003}{2003}=0\)
\(\Leftrightarrow\dfrac{x+2010}{2005}+\dfrac{x+2010}{2004}+\dfrac{x+2010}{2003}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
Vậy ...
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}+3=0\)
\(\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+6}{2004}+1\right)+\left(\frac{x+7}{2003}+1\right)=0\)
\(\frac{x+5+2005}{2005}+\frac{x+6+2004}{2004}+\frac{x+7+2003}{2003}=0\)
\(\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2012}{2003}=0\)
\(\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
\(x+2010=0\)
\(x=-2010\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)
\(\Rightarrow x-2009=0\Rightarrow x=2009\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)
\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)
\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2009=0\)
\(\Leftrightarrow x=2009\)
Vậy \(x=2009\)
Bài 1:
Ta có: \(\frac{497}{-499}=-\frac{497}{499}>-\frac{499}{499}=-1\left(1\right)\)
\(-\frac{2345}{2341}< -\frac{2341}{2341}=-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{497}{-499}>-\frac{2345}{2341}\)
Bài 2:
\(\frac{x+5}{2005}+\frac{x+6}{2004}=\frac{x+7}{2003}+3=0\)
\(\Rightarrow\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}+3=0\)
\(\Rightarrow\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
\(\Rightarrow\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
\(\Rightarrow\left(x+2010\right)\times\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
Vì \(\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\ne0\Rightarrow x+2010=0\)
\(\Rightarrow x=0-2010=-2010\)
Vậy x = -2010
\(\Leftrightarrow\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
\(\Leftrightarrow\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\ne0\)
\(\Leftrightarrow x=-2010\)
Theo mình đoán thì chắc ý bạn là
\(\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}=-3\)
\(\Leftrightarrow\left(\dfrac{x+5}{2005}+1\right)+\left(\dfrac{x+6}{2004}+1\right)+\left(\dfrac{x+7}{2003}+1\right)=0\)
\(\Leftrightarrow\dfrac{x+2010}{2005}+\dfrac{x+2010}{2004}+\dfrac{x+2010}{2003}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x=-2010\) hay \(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}=0\left(vôlí\right)\)
Vậy \(x=-2010\)