![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)(x-2005).2006=0
=>x-2005=0
=>x=2005
b)480+45.4=(x+125):5+260
=>480+180=(x+125):5+260
=>660=(x+125):5+260
=>(x+125):5=400
=>x+125=2000
=>x=1875
c)2005.(x-2006)=2005
=>x-2006=1
=>x=2007
d){(x+50).50-50}:50=50
=>(x+50).50-50=2500
=>(x+50)*50=2550
=>x+50=51
=>x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
[(x+50).50-50]:50=50
(x+50).50-50=50.50
(x+50).50-50=2500
(x+50).50=2500+50
(x+50).50=2550
x+50=2550:50
x+50=51
x=51-50
x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
1) 50x50=2500
( x+50).50=2500+50=2550
x+50 =2550:50=51
x =51-50=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x-2006=1=>x=2006
b)(x+50)*50-50=2500
(x+50)*50=2550
x+50=51
x=1
Tick Nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x - 2005 ) . 2006 = 0
x - 2005 = 0 : 2006
x - 2005 = 0
x = 0 + 2005
x = 2005
b) 2005.(x-2006) = 2005
x - 2006 = 2005 : 2005
x - 2006 = 1
x = 1 + 2006
x = 2007
c) 480+45.4=(x+125) : 5 + 260
480 + 180 = (x+125) : 5 + 260
660 = ( x + 125 ) : 5 + 260
660 - 260 = ( x+ 125 ) : 5
400 = ( x + 125 ) : 5
400 x 5 = x + 125
2000 = x + 125
2000 - 125 = x
1875 = x
tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
(x - 2005) x 2006 = 0
<=> x - 2005 = 0
<=> x = 2005
Vậy x = 2005
\(456+\left(x-357\right)=1362\) \(\left(2345-x\right)-183=2014\)
\(x-357=906\) \(2345-x=2197\)
\(x=1263\) \(x=148\)
\(\left(x-2005\right).2006=0\) Phần sau tương tự thế !
\(x-2005=0\)
\(x=2005\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2005.(x-2006) = 2005
x - 2006 = 1
x = 2007
[(x+50).50-50]:50 = 50
(x+50).50-50 = 50 x 50 = 2500
(x+50).50 = 2500 + 50 = 2550
x + 50 = 2550 : 50 = 51
x = 1
\(x^{50}=x\)
\(\Rightarrow x^{50}-x=0\)
\(\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{0;1\right\}\).
#\(Toru\)