
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x}{14}=\dfrac{3y}{15}=\dfrac{5z}{15}=\dfrac{2x+3y-5z}{14+12-15}=\dfrac{28}{14}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=2\\\dfrac{y}{5}=2\\\dfrac{z}{3}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=10\\z=6\end{matrix}\right.\)
Vậy ...
b) Ta có: \(\left\{{}\begin{matrix}3x=2y\\7y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{y}{15}\\\dfrac{y}{15}=\dfrac{z}{21}\end{matrix}\right.\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-12+21}=\dfrac{32}{19}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{32}{19}\\\dfrac{y}{12}=\dfrac{32}{19}\\\dfrac{z}{21}=\dfrac{32}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{320}{19}\\y=\dfrac{384}{19}\\z=\dfrac{672}{19}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!
a) \(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{14}=\dfrac{3y}{15}=\dfrac{5z}{15}\)
Áp dụng t.c dãy tỉ số = nhau có:
\(\dfrac{2x}{14}=\dfrac{3y}{15}=\dfrac{5z}{15}=\dfrac{2x+3y-5z}{14+15-15}=2\)
Khi đó tìm x.
b) \(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
Khi đó \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
...

1. \(\dfrac{x}{7}=\dfrac{y}{4};x-y=30\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(=>\dfrac{x}{7}=10=>x=10.7=70\)
=> \(\dfrac{y}{4}=10=>y=10.4=40\)
Vậy x=70;y=40
2. Tương tự
3.\(2x=3y;x+y=10\)
Ta có: \(2x=3y=>\dfrac{y}{2}=\dfrac{x}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{2}=\dfrac{x}{3}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(=>\dfrac{y}{2}=2=>y=2.2=4\)
=> \(\dfrac{x}{3}=2=>x=2.3=6\)
Vậy y=4;x=6
4. 5. Tương tự
6. \(\dfrac{x}{5}=\dfrac{y}{2};3x-2y=44\)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{2y}{4}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
=> \(\dfrac{x}{5}=4=>x=4.5=20\)
=> \(\dfrac{y}{2}=4=>y=4.2=8\)
Vậy x=20;y=8
7. Tương tự
1, \(\dfrac{x}{7}=\dfrac{y}{4}\) và \(x-y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(\Rightarrow\dfrac{x}{7}=10\Rightarrow x=70\)
\(\Rightarrow\dfrac{y}{4}=10\Rightarrow y=40\)
2, \(\dfrac{x}{4}=\dfrac{y}{-7}\) và \(x-y=30\)
Làm tương tự câu 1.
3, \(2x=3y\) và \(x+y=10\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{2}=10\Rightarrow y=20\)
4, \(4x=3y\) và \(x-y=11\)
\(4x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x-y}{3-4}=\dfrac{11}{-1}=-11\)
\(\Rightarrow\dfrac{x}{3}=-11\Rightarrow x=-33\)
\(\Rightarrow\dfrac{y}{4}=-11\Rightarrow y=-44\)
5, \(3x=5y\) và \(x+y=40\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\dfrac{x}{5}=5\Rightarrow x=25\)
\(\Rightarrow\dfrac{y}{3}=5\Rightarrow y=15\)
- Mệt @@ lần sau đăng từng câu một thôi bn nhé!

\(\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{3x-2y}{3.5-2.4}=\frac{28}{7}=4\)
\(\Leftrightarrow\hept{\begin{cases}x=4.5=20\\y=4.4=16\end{cases}}\)

Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

đặt \(\frac{x}{5}=\frac{y}{3}\text{ }=k\)
\(\Rightarrow\text{ }x=5k\text{ };\text{ }y=3k\)
\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Rightarrow\text{ }25k^2-9k^2=4\)
\(\Rightarrow\text{ }k^2.\left(25-9\right)=4\)
\(\Rightarrow\text{ }k^2.16=4\)
\(\Rightarrow\text{ }k^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow\text{ }\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)
Nếu k = \(\frac{1}{2}\)thì \(x=\frac{5}{2}\text{ };\text{ }y=\frac{3}{2}\)
Nếu k = \(-\frac{1}{2}\)thì \(x=\frac{-5}{2}\text{ };\text{ }y=\frac{-3}{2}\)
10x = 6y
\(\Rightarrow\text{ }\frac{x}{6}=\frac{y}{10}\)
đặt \(\frac{x}{6}=\frac{y}{10}=k\)
\(\Rightarrow\text{ }x=6k\text{ };\text{ }y=10k\)
\(\Rightarrow\text{ }2.\left(6k\right)^2-\left(10k\right)^2=-28\)
\(\Rightarrow\text{ }72k^2-100k^2=-28\)
\(\Rightarrow\text{ }\left(72-100\right).k^2=-28\)
\(\Rightarrow\text{ }\left(-28\right).k^2=\left(-28\right)\text{ }\)
\(\Rightarrow\text{ }k^2=\left(-28\right)\text{ }:\text{ }\left(-28\right)\)
\(\Rightarrow\text{ }k^2=1\)
\(\Rightarrow\text{ }\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
Nếu k = 1 thì x = 10 ; y = 6
Nếu k = -1 thì x = -10 ; y = -6

