K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

Tìm x:

1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8

\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)

\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)

Vậy x = 5

2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)

\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)

\(\Leftrightarrow-4x+15=-7\)

\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)

Vậy x = \(\frac{11}{2}\)

3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6

\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)

\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)

\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)

Vậy x = -1

4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)

\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)

\(\Leftrightarrow14x=0\Leftrightarrow x=0\)

Vậy x = 0

5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)

\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)

Vậy x = \(\frac{1}{2}\)

6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27

\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)

\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)

\(\Leftrightarrow-x^3=27\)

\(\Leftrightarrow x=-3\)

Vậy x = -3

7. 3x (8x - 4) - 6x (4x - 3) = 30

\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)

\(\Leftrightarrow0=30\) ( vô lý)

Vậy pt vô nghiệm

8. 3x (5 - 2x) + 2x (3x - 5) = 20

\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)

\(\Leftrightarrow5x=20\Leftrightarrow x=4\)

Vậy x = 4

30 tháng 9 2016

Bài 2

a) 4x(x-3)-3x+9

=4x(x-3)-3(x-3)

= (x-3)(4x-3)

b) x3+2x2-2x-4

=(x3+2x2)-(2x+4)

=x2(x+2)-2(x+2)

=(x+2)(x2-2)

c) 4x2-4y+4y-1

=4x2-1

=(2x-1)(2x+1)

d) x5-x

=x(x4-1)

=x(x2-1)(x2+1)

31 tháng 10 2018

a) 4x(x-3)-3x+9

= 4x(x-3) - 3(x-3)

= (x-3)(4x-3)

b)x3 + 2x2 - 2x - 4

= x2(x + 2) - 2(x + 2)

= (x+2)(x2-2)

c) 4x2 - 4y +4y -1

= [(2x)2-12] + (-4y+4y)

= (2x+1)(2x-1)

d) x5-x

= x(x4 - 1)

3 tháng 6 2018

1.

a) \(\left\{4x-2\left(x-3\right)-3\left[x-3\left(4-2x\right)+8\right]\right\}.\left(-3x\right)\)

= \(\left[4x-2x+6-3\left(x-12+6x\right)+8\right].\left(-3x\right)\)

\(=\left(4x-2x+6-3x+36-18x+8\right).\left(-3x\right)\)

= \(\left(-19x+50\right).\left(-3x\right)\)

\(=57x^2-150x\)

b) \(5\left(3x^2+4y^3\right)+\left[9\left(2x^2-y^3\right)-2\left(x^2-5y^3\right)\right]\)

\(=15x^2+20y^3+\left(18x^2-9y^3-2x^2+10y^3\right)\)

\(=15x^2+20y^3+16x^2+y^3\)

\(=31x^2+21y^3\)

2.

a) \(5x\left(1-2x\right)-3x\left(x+18\right)=0\)

\(\Rightarrow5x-10x^2-3x^2-54x=0\)

\(\Rightarrow-49x-13x^2=0\)

\(\Rightarrow x\left(-49-13x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-49}{13}\end{matrix}\right.\)

b)

\(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)

\(\Rightarrow5x-3\left[4x-2\left(4x-15x+6\right)\right]=182\)

\(\Rightarrow5x-3\left(4x-8x+30x-12\right)=182\)

\(\Rightarrow5x-12x+24x-90x+36=182\)

\(\Rightarrow-73x-146=0\)

\(\Rightarrow x=-2\)

3 tháng 6 2018

cảm ơn bạnvui

11 tháng 9 2017

a)\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)

\(=-3x.\left(x^2+2.x.2+2^2\right)+\left(x^2+x+3x-3\right).\left(x+1\right)-\left(2x\right)^2-2.2.x.\left(-3\right)+\left(-3\right)^2\)

\(=-3x.\left(x^2+4x+4\right)+\left(x^2+\left(x+3x\right)-3\right).\left(x+1\right)-4x+12x+9\)

\(=-3x.\left(x^2+4x+4\right)+\left(x^2+4x-3\right)\left(x+1\right)-4x+12x+9\)

\(=-3x^3-12x^2-12x+x^3+4x^2-3x+x^2+4x-3-4x+12x+9\)

\(=\left(-3x^3-x^3\right)+\left(-12x^2+4x^2+x^2\right)+\left(-12x-3x+4x-4x+12x\right)+\left(-3+9\right)\)

\(=-2x^3-7x^2-3x+6\)

b)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)

\(=\left(x.\left(x+3\right)-3\left(x+3\right)\right)\left(x+2\right)-\left(x.\left(x^2-3\right)-1\left(x^2-3\right)\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)

\(=\left(x.x+x.3-3.x+\left(-3\right).3\right)\left(x+2\right)-\left(x.x^2+x.\left(-3\right)-1.x^2+\left(-1\right).\left(-3\right)\right)-5x.x+\left(-5x\right).4-x^2-2x5+5^2\)

\(=\left(x^2+3x-3x-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^2+\left(3x-3x\right)-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^2-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=x^3+2x^2-9x-15-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^3-x^3\right)+\left(2x^2-x^2-5x^2-x^2\right)+\left(-9x-3x-20x-10x\right)+\left(-18+3+25\right)\)

\(=-5x^2-42x+10\)

3 tháng 6 2019

Câu 1: Chứng minh giá trị của biểu thức không phụ thuộc vào biến x

A = x (5x - 3) - x2 ( x - 1) + x (x2 - 6x) + 3x - 10

A= 5x2-3x -x3 +x2 +x3-6x2+3x-10

A= -10

Vậy giá trị của biểu thức A ko phụ thuộc vào biến x

B = ( 2x + 1) x - x2 (x + 2) + x3 - x + 3

B= 2x2+x-x3-2x2+x3-x+3

B= 3

Vậy giá trị của biểu thức B ko phụ thuộc vào biến x

C = 5x ( x2 - 7x + 2) - x2 (5x - 8) + 27x2 - 10x + 2

C= 5x3-35x2+10x-5x3+8x2+27x2-10x+2

C= 2

Vậy giá trị của biểu thức C ko phụ thuộc vào biến x

Câu 2: Tìm x:

1. 4x (3x + 2) - 6x (2x + 5) + 21 (x - 1) = 0

=> 12x2 + 8x -12x2 -30x +21x -21=0

=> -x -21 = 0

=> x = -21

Vậy x = -21

2. 5x (12x + 7) - 3x (20x - 5) = -100

=> 60x2 + 35x - 60x2 + 15x +100=0

=> 50x + 100 =0

=> x = -2

Vậy x = -2

4. 10 (3x - 2) - 3 (5x + 2) + 5 (11 - 4x) = 25

=> 30x-20-15x-6+55-20x-25=0

=> -5x +4 =0

=> x = 4/5

Vậy x = 4/5

Câu 1

a) \(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)+3x-10\)

\(A=5x^2-3x-x^3+x^2+x^3-6x^2+3x-10\)

\(A=-10\)

Vậy biểu thức A không phụ thuộc vào biến x

b) \(B=\left(2x+1\right)x-x^2\left(x+2\right)+x^3-x+3\)

\(B=2x^2+x-x^3-2x^2+x^3-x+3\)

\(B=3\)

Vậy biểu thức B không phụ thuộc vào biến x

c) \(C=5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x+2\)

\(C=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x+2\)

C = 2

Vậy biểu thức C không phụ thuộc vào biến x

26 tháng 6 2018

a) 3x\(\left(x-1\right)^2\)-\(\left(1-x\right)^3\)

= 3x\(\left(x^2-2x+1^2\right)\)-\(\left(1-x\right)^3\)

= \(3x^3\)-\(6x^2\)+3x-\(\left(1-x\right)^3\)

= \(3x^3\)-\(6x^2\)+3x-\(\left(1^3-3\cdot1^2\cdot x+3\cdot1\cdot x^2-x^3\right)\)

= \(3x^3-6x^2+3x-\left(1-3x+3x^2-x^3\right)\)

= \(3x^3-6x^2+3x-1+3x-3x^2+x^3\)

= \(3x^3+x^3-6x^2-3x^2+3x+3x-1\)

\(4x^3-9x^2+6x-1\)

----------------------------------------------

b) \(3x\left(x+2\right)+5\left(-x-2\right)\)

= \(3x^2+6x+\left[5\left(-x\right)-10\right]\)

= \(3x^2+6x+5\left(-x\right)-10\)

không biết mình làm thế này có quá gọn không nhỉ :|

-----------------------------------------------

c) \(x\left(x-y\right)+\left(x-y\right)\)

= \(x^2-xy+\left(x-y\right)\)

= \(x^2-xy+x-y\)

------------------------------------------------

d) \(12a^2b-18ab^2-30b^3\)

Theo mình ở câu này bạn ghi thiếu. Ở câu này hằng dẳng thức ta sử dụng là \(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\), nếu bạn cung cấp dữ kiện \(A^3\) thì mình mới làm được nếu không thì câu này gọn sẵn rồi :))

------------------------------------------------

e) \(2x\left(x-2\right)-\left(2-x\right)^2\)

= \(2x^2-4x-\left(2^2-2\cdot2\cdot x+x^2\right)\)

= \(2x^2-4x-4+4x-x^2\)

= \(2x^2-x^2-4x+4x-4\)

= \(x^2-4\)

-------------------------------------

Chúc bạn học tốt ! hihi

27 tháng 6 2018

ủa mik nhờ cậu lm theo cách bài phân tchs đa thức thành phân tử = phương pháp đặt nhân tử chung cơ

21 tháng 6 2018

a, \(2x^2+2x+5x+5=2x\left(x+1\right)+5\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\)

b,\(2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)

c,\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

d,\(x^2-4x-5=x^2+x-5x-5=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)

e,\(\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left(a^2-2a+1\right)\left(a^2+2a+1\right)=\left(a-1\right)^2\left(a+1\right)^2\)

11 tháng 12 2016

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )

\(\Leftrightarrow x=2\)

b) \(2x^3+x^2-6x=0\)

\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)

c) \(4x^2+4xy+x^2-2x+1+y^2=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)