K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

\(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)

\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}xy\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)

\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)

\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)

\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+\dfrac{1}{3}.x^2+\left(\dfrac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)

\(=x^6-\dfrac{1}{27}\)

10 tháng 6 2018

Giải:

+) \(\left(x-4\right)\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4.x+4^2\right)\)

\(=x^3-4^3\)

\(=x^3-64\)

+) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)

\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)

\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\dfrac{1}{27}x^3+8y^3\)

+) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

+) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)

\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+\dfrac{1}{3}.x^2+\left(\dfrac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)

\(=x^6-\dfrac{1}{27}\)

Vậy ...

17 tháng 7 2018

\(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64\)

\(=x^3+64\)

\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)

\(=\)\(x^2-27y^3\)

\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)

\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)

làm nốt nha

a: \(\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

b: \(\left(x-3y\right)^3=x^3-9x^2y+27xy^2-27y^3\)

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

2 tháng 1 2017

\(a,\left(x+4\right).\left(x^2-4x+16\right)=x^3-4x^2+16x+4x^2-16x+64\) \(64\)

                                                           \(=x^3+64\)

hoặc \(\left(x+4\right).\left(x^2-4x+16\right)=x^3+64\) ÁP Dụng hằng đẳng thức

\(b,\left(x-3y\right).\left(x^2+3xy+9y^2\right)=x^3-27\)

                                                           

                                                            

2 tháng 1 2017

a) (x+4).(x^2-4x+16)

= (x+4).(x^2-x.4+4^2)

= x^3+4^3

= x^3+64

b) (x-3y).(x^2+3xy+9y^2)

= (x-3y).(x^2+x.3y+(3y)^2)

= x^3-(3y)^3

= x^3-27y^3

26 tháng 7 2017

\(a,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(b,\left(x^2-3\right)\left(x^4+3x^2+9\right)=x^6-27\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

\(d,\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)

\(e,\left(5+3x\right)^3=125+225x+135x^2+27x^3\)

4 tháng 11 2018

a) \(2x^2-2y^2\)

\(=2\left(x^2-y^2\right)\)

\(=2\left(x-y\right)\left(x+y\right)\)

b) \(x^2-4x+4\)

\(=x^2-2\cdot x\cdot2+2^2\)

\(=\left(x-2\right)^2\)

c) \(x^2+2x+1-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x-y+1\right)\left(x+y+1\right)\)

d) \(x^2-4x\)

\(=x\left(x-4\right)\)

e) \(x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2\)

\(=\left(x+5\right)^2\)

g) \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

h) \(2x^2-2\)

\(=2\left(x^2-1\right)\)

\(=2\left(x-1\right)\left(x+1\right)\)

i) \(5x^2-5xy+9x-9y\)

\(=5x\left(x-y\right)+9\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+9\right)\)

k) \(y^2-4y+4-x^2\)

\(=\left(y-2\right)^2-x^2\)

\(=\left(y-x-2\right)\left(y+x-2\right)\)

l) \(x^2-16\)

\(=x^2-4^2\)

\(=\left(x-4\right)\left(x+4\right)\)

m) \(3x^2-3xy+2x-2y\)

\(=3x\left(x-y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+2\right)\)

o) \(3x^4-6x^3+3x^2\)

\(=3x^2\left(x^2-2x+1\right)\)

\(=3x^2\left(x-1\right)^2\)

4 tháng 11 2018

a) 2x2 - 2y2

 = (2x - 2y)(2x + 2y)

 = 4(x - y)(x + y)

b) x2 - 4x + 4

 = (x - 2)2

c) x+ 2x + 1 - y2

 = (x + 1)2 - y2

 = (x + 1 - y)(x + 1 + y)

d) x2 - 4x 

 = x(x - 4)

e) x+10x + 25

 = (x + 5)2

g) x2 - 2xy + y2 - 9

= (x - y)2 - 32

 = (x - y - 3)(x - y + 3)

h) 2x2 - 2

= 2(x2 - 1) 

 = 2(x - 1)(x + 1)

i) 5x- 5xy + 9x - 9y

  = 5x(x - y) + 9(x- y)

 = (5x + 9)(x - y)

k) y2 - 4y + 4 - x2

 = (y - 2)2 - x2

 = (y - 2 - x)(y - 2 + x)

l) x- 16

 = x- 42

 = (x - 4)(x + 4)

m) 3x2 - 3xy + 2x -2y

 = 3x(x - y) +2(x-y)

 = (3x + 2)(x - y)

o) 3x- 6x+ 3x2

 = 3x4 - 3x3 - 3x3 + 3x2

 = 3x3(x - 1) - 3x2(x - 1)

 = (3x- 3x2)(x - 1)

 = 3x2(x - 1)(x - 1)

 = 3x2.(x - 1)2