K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

ĐKXĐ : x khác 3

\(\frac{x+4}{x-3}=1\Rightarrow x+4=x-3\Leftrightarrow x-x=-3-4\Leftrightarrow0=-7\)( vô lí )

Vậy pt vô nghiệm

9 tháng 3 2021

Trả lời:

\(\frac{x+4}{x-3}=1\)\(\left(đkxđ:x\ne3\right)\)

\(\Leftrightarrow x+4=x-3\)

\(\Leftrightarrow x-x=-3-4\)

\(\Leftrightarrow0x=-7\)(vô lí)

Vậy \(S=\varnothing\)

18 tháng 4 2017

câu 1:

a)x-1=5-x\(\Leftrightarrow\)x+x=5+1\(\Leftrightarrow\)2x=6\(\Leftrightarrow\)x=3

Vậy tập nghiệm của PT (a) là S={3}

b)3+x=2-x\(\Leftrightarrow\)x+x=2-3\(\Leftrightarrow\)2x=-1\(\Leftrightarrow\)x=-0,5

Vậy tập nghiệm của PT (b) là:S={-0,5}

câu 2:

a) 3x+7=2x-3\(\Leftrightarrow\)3x-2x=-3-7\(\Leftrightarrow\)x=-10

Vậy tập nghiệm của PT (a) là:S={-10}

b)4-(x-2)=(3-2x)\(\Leftrightarrow\)4-x+2=3-2x\(\Leftrightarrow\)-x+2x=-4+3-2\(\Leftrightarrow\)x=-3

Vậy tập nghiệm của PT (b) là:S={-3}

Câu 3:

a)\(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\Leftrightarrow\dfrac{7\left(5x-4\right)}{14}=\dfrac{2\left(16x+1\right)}{14}\)

\(\Leftrightarrow\)35x-28=32x+2\(\Leftrightarrow\)35x-32x=2+28\(\Leftrightarrow\)3x=30\(\Leftrightarrow\)x=10

Vậy tập nghiệm của PT (a) là :S={10}

b)\(\dfrac{12x+5}{3}=\dfrac{2x-7}{4}\Leftrightarrow\dfrac{4\left(12x+5\right)}{12}=\dfrac{3\left(2x-7\right)}{12}\)

\(\Leftrightarrow\)48x+20=6x-21\(\Leftrightarrow\)48x-6x=-20-21\(\Leftrightarrow\)42x=-41\(\Leftrightarrow\)x=\(-\dfrac{41}{42}\)

Vậy tập nghiệm của PT (b) là:S={\(-\dfrac{41}{42}\)}

18 tháng 4 2017

có sai chỗ nào không bạn!!!

12 tháng 1 2018

\(x^4+x^3+x+1=0\)

\(\Rightarrow\left(x^4+x^3\right)+\left(x+1\right)=0\)

\(\Rightarrow x^3\left(x+1\right)+1\left(x+1\right)=0\)

\(\Rightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Rightarrow x=-1\)

12 tháng 1 2018

dùng dau khi và chỉ khi nha bạn

8 tháng 2 2020

Bài 2 :

a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)

c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)

=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)

d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)

e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)

f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)

=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)

8 tháng 2 2020

Bài 1 :

a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)

=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)

=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)

=> \(12-3x-9-2x+4=0\)

=> \(-5x=-7\)

=> \(x=\frac{7}{5}\)

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

4 tháng 8 2018

điều kiện : \(x\ne\pm4\)

ta có : \(\dfrac{1}{x-4}+\dfrac{1}{x+4}=\dfrac{1}{3}\) \(\Leftrightarrow\dfrac{x+4+x-4}{\left(x-4\right)\left(x+4\right)}=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{2x}{x^2-16}=\dfrac{1}{3}\Leftrightarrow2x=\dfrac{1}{3}\left(x^2-16\right)\)

\(\Leftrightarrow6x=x^2-16\Leftrightarrow x^2-6x-16=0\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\) vậy \(x=8;x=-2\)

20 tháng 2 2020

\(\left(x-3\right)^4-3\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow x^4-12x^3+51x^2-90x+51=1\)

\(\Leftrightarrow x^4-12x^3+51x^2-90x+51-1=0\)

\(\Leftrightarrow x^4-12x^3+51x^2-90x+50=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-6x+10\right)=0\)

\(x^2-6x+10\ne0\) nên:

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Vậy: Phương trình có tập nghiệm là: S = {1; 5}

Ta có: \(\left(x-3\right)^4-3\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow\left(x^2-6x+9\right)^2-3x^2+18x-30-1=0\)

\(\Leftrightarrow x^4+36x^2+81+12x^3+18x^2+108x-3x^2+18x-31=0\)

\(\Leftrightarrow x^4+12x^3+51x^2+126x+50=0\)

1 tháng 4 2020

Giải các pt sau:

a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2

1 tháng 4 2020

b.

3x-1=7-x
=>3x-1-(7-x)=0
=>3x-1-7+x=0
=>4x-8=0
=>4x=8
=>x=2