K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

x^4 + 5x^3 - 14x^2 - 20x +16 = 0 

<=> x4 + 6x3 - x3 - 4x2 - 6x2 - 4x2 + 4x - 24x + 16 = 0 

<=> x4 + 6x3 - 4x2 - x3 - 6x2 + 4x - 4x2 - 24x + 16 = 0 

<=> x2(x2 + 6x - 4) - x(x2 + 6x - 4) - 4(x2 + 6x - 4) = 0 

<=> (x2 - x - 4)( x2 + 6x - 4 ) = 0 

<=> x = (1 + √17)/2 
<=> x = (1 - √17)/2 
<=> x = -3+√13 
<=> x = -3-√13

4 tháng 12 2018

- đợi mk 6s hoàn thiện

4 tháng 12 2018

x⁴ + 5x³ + 12x² + 20x + 16 = 0 

Nhận xét: vì 16/1 = (20/5)² ⇒ đây là pt đối xứng. Vì x = 0 không là nghiệm của pt nên chia 2 vế của pt cho x²⇒pt trở thành: 

⇔x² + 5x + 12+ 20/x + 16/x² = 0 

⇔(x²+ 16/x²) +5(x+4/x) + 12 = 0 

đặt x+4/x = t ⇒ t² = x²+ 8 + 16/x² 

học tốt!

14 tháng 8 2015

cái bài này tìm nghiệm là ra mà bạn

31 tháng 12 2016

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi  

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Ta có:

\((x+3)(x+12)(x-4)(x-16)+20x^2=0\)

\(\Leftrightarrow [(x+3)(x-16)][(x+12)(x-4)]+20x^2=0\)

\(\Leftrightarrow (x^2-13x-48)(x^2+8x-48)+20x^2=0\)

Đặt \(x^2-12x-48=a\). PT trở thành:

\((a-x)(a+20x)+20x^2=0\)

\(\Leftrightarrow a^2+19ax-20x^2+20x^2=0\Leftrightarrow a^2+19ax=0\)

\(\Leftrightarrow a(a+19x)=0\)

\(\Leftrightarrow (x^2-12x-48)(x^2+7x-48)=0\)

\(\Leftrightarrow \left[\begin{matrix} x^2-12x-48=0\\ x^2+7x-48=0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=6\pm 2\sqrt{21}\\ x=\frac{-7\pm \sqrt{241}}{2}\end{matrix}\right.\)

Vậy......

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

=>\(\sqrt{5x+1}\left(\sqrt{5}-6\sqrt{5}-\dfrac{1}{4}\right)=\dfrac{27\sqrt{5}}{4}\)

=>căn 5x+1=\(\dfrac{27\sqrt{5}}{28\sqrt{5}-1}\)

=>5x+1=0,96

=>5x=-0,04

=>x=-0,04/5=-0,008

11 tháng 5 2020

ĐK \(\frac{-11}{5}\le x\le6\)

Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)

\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)

Vậy pt đã cho có nghiệm duy nhất x=5