Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2018x^2+2017x+2018\)
\(\Rightarrow x^4+2018x^2+2018x-x+2018\)
\(\Rightarrow\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(\Rightarrow x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
\(x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=x^4-x+2018x^2+2018x+2018\)
\(=x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2018\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)
\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)
\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)
\(A=-1\)
x4+2018x2+2017x+2018=x4+2018x2+2018x-x+2018
=x(x3-1)+2018(x2+x+1)=(x2+x+1)(x2-x+2018)
Ktra xem mk có nhầm chỗ nào ko nhé. Cảm ơn bạn
BPT\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1\right)-\left(2017x^2+2018\right)\left(4-5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1-4+5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(7x-5\right)\ge0\)
DO 2017x2+2018 luôn luôn lớn hơn 0
ĐỂ B PT \(\ge\)0\(\Leftrightarrow7x-5\ge0\)
\(\Leftrightarrow x\ge\frac{5}{7}\)
vậy ...........
\(x^4+2018x^2-2018=0\)
Đặt \(x^2=a\left(a\ge0\right)\)
\(a^2+2018a-2018=0\)
\(\Leftrightarrow\left(a+2018a+1009^2\right)-1009^2-2018=0\)
\(\Leftrightarrow\left(a+1009\right)^2-\text{1020099}=0\)
\(\Leftrightarrow\left(a+1009-\sqrt{1020099}\right)\left(a+1009+\sqrt{1020099}\right)=0\)
\(\Leftrightarrow a=\sqrt{1020099}-1009\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{1020099}-1009}\\x=-\sqrt{\sqrt{1020099}-1009}\end{matrix}\right.\)
\(x^4+2018x^2+2017x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x.\left(x^3-1\right)+2018.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2018.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
x^4+2018x^2−2017x+2018
=(x^4+x)+(2018x^2−2018x+2018)
=x(x^3+1)+2018(x^2−x+1)
=x(x+1)(x^2−x+1)+2018(x^2−x+1)
=(x^2−x+1)[x(x+1)+2018]
=(x^2−x+1)(x^2+x+2018)
=(x^2−x+1)(x^2+x+2018)