Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)
\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)
Vậy phương trình vô nghiệm
p/s: mk ko bt cách trình bài => sai sót bỏ qua
Bài 2:đk x khác -1 đặt luôn x+1=y y khác 0
\(\Leftrightarrow k\left(y+1\right)-3k+3=y\Leftrightarrow\left(k-1\right)y-2k+3=0\) (*)
với k=1 => 0.y-2+3=1=0 vô nghiệm
với k khác 1 ta có \(y=\frac{2k-3}{k-1}\)
Đk x<0=> y<1
\(\frac{2k-3}{k-1}< 1\Leftrightarrow\frac{2k-3-k+1}{k-1}=\frac{k-2}{k-1}< 0\Rightarrow1< k< 2\)
Bài 3: ĐK x khác -1
\(4-t=\frac{2}{x+1}\Leftrightarrow\left(4-t\right)\left(x+1\right)=2\) (*)
Với t=4 có 0.(x+1)=2 => vô nghiệm
với t khác 4 => (x+1)=2/(4-t)=> x=2/(4-t)-1
nghiệm dương => \(\frac{2}{4-t}-1>0\Rightarrow\frac{2+t-4}{4-t}=\frac{t-2}{4-t}>0\Rightarrow2< t< 4\)
Bổ xung: với bài này không ảnh hửng đến đáp số
Bài 2: cần giải thêm
\(\frac{2k-3}{k-1}\ne0\Rightarrow k\ne\frac{3}{2}\)
Bài 3 giải thêm
\(\frac{t-2}{4-t}\ne-1\)
Bài 2: kết luận nhầm : \(1< k< 2\)
Bài 3:
\(\left\{\begin{matrix}x\ne1\\\left(4-t\right)\left(x+1\right)=2\Leftrightarrow4+4x-tx-t=2\end{matrix}\right.\)
\(\Leftrightarrow\left(4-t\right)x=t-2\)
\(\Leftrightarrow\left\{\begin{matrix}t=4\\0.x=2\rightarrow Vo.N_0\end{matrix}\right.\)
\(\left\{\begin{matrix}t\ne4\\x=\frac{t-2}{4-t}\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}x>0\\\frac{t-2}{4-t}>0\end{matrix}\right.\)\(\Rightarrow2< t< 4\)
Kết luận: \(2< t< 4\)
Bài 1+1
\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\Leftrightarrow k\left(x+2\right)-3\left(k-1\right)=\left(x+2\right)-1\) Đặt:\(\left\{\begin{matrix}x+2=y\\k-1=t\\x< 0\Rightarrow y< 2\end{matrix}\right.\)
\(\Leftrightarrow ky-y=3\left(k-1\right)-1\Leftrightarrow ty=3t-1\)(1)
\(\left\{\begin{matrix}t=0\Rightarrow k=1\\\left(1\right)\Leftrightarrow0.y=-1\Rightarrow voN_o\end{matrix}\right.\)
\(\left\{\begin{matrix}t\ne0\Rightarrow k\ne1\\y=\frac{3t-1}{t}\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}y< 2\\\frac{3t-1}{t}< 2\end{matrix}\right.\)\(\Leftrightarrow\frac{3t-1-2t}{t}< 0\) \(\Leftrightarrow\frac{t-1}{t}< 0\)\(\Leftrightarrow0< t< 1\) \(\Rightarrow-1< k< 0\)
Kết luận: \(-1< k< 0\)
a, \(x^4-2x^3+4x^2-3x+2=x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2\)
\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(=\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\) (dpdcm)
b, \(x^6+x^5+x^4+x^2+x+1=x^4\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^4+1\right)=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(x^4+1\right)>0\) (đpcm)
a) ĐKXĐ: \(x\ne2;4\)
\(\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}\) = \(\dfrac{16}{5}\)
<=> \(\dfrac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\) = \(\dfrac{16}{5}\)
<=> \(\dfrac{x^2-7x+12-x^2+4x-4}{\left(x-2\right)\left(x-4\right)}-\dfrac{16}{5}\) = 0
<=> \(\dfrac{5\left(-3x+8\right)}{5\left(x-2\right)\left(x-4\right)}-\dfrac{16\left(x^2-6x+8\right)}{5\left(x-2\right)\left(x-4\right)}\) = 0
=> \(-15x+40-16x^2+96x-128\) = 0
<=> \(-\left(16x^2-81x+88\right)\) = 0
<=> \(16x^2-81x+88\) = 0
<=> \(\left(16x^2-81x+\dfrac{6561}{64}\right)-\dfrac{929}{64}\) = 0
<=> \(\left(4x-\dfrac{81}{8}\right)^2\) = \(\dfrac{929}{64}\)
<=> \(\left[{}\begin{matrix}4x-\dfrac{81}{8}=\sqrt{\dfrac{929}{64}}\\4x-\dfrac{81}{8}=-\sqrt{\dfrac{929}{64}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\dfrac{81+\sqrt{929}}{32}\\x=\dfrac{81-\sqrt{929}}{32}\end{matrix}\right.\)
Vậy .......................................... ( số xấu nhỉ!)
b) \(2x^2-6x+1\) = 0
<=> \(2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{7}{2}\) = 0
<=> \(2\left(x-\dfrac{3}{2}\right)^2\) = \(\dfrac{7}{2}\)
<=> \(\left(x-\dfrac{3}{2}\right)^2\) = \(\dfrac{7}{4}\)
<=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\sqrt{\dfrac{7}{4}}\\x-\dfrac{3}{2}=-\sqrt{\dfrac{7}{4}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)
Vậy .............................
c) \(3x^2+12x-66\) = 0
<=> \(3\left(x^2+4x+4\right)-78\) = 0
<=> \(3\left(x+2\right)^2\) = 78
<=> \(\left(x+2\right)^2\) = 26
<=> \(\left[{}\begin{matrix}x+2=\sqrt{26}\\x+2=-\sqrt{26}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-2+\sqrt{26}\\x=-2-\sqrt{26}\end{matrix}\right.\)
Vậy .................................
P/s: Yahoooooooooooooo.......xong rồi!
\(x^4-6x^3+16x^2-22x+16=0\)
\(\Rightarrow x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15+1=0\)
\(\Rightarrow x^2\left(x^2-2x+3\right)-4x\left(x^2-2x+3\right)+5\left(x^2-2x+3\right)x^2+1=0\)
\(\Rightarrow\left(x^2-2x+3\right)\left(x^2-4x+5\right)=-1\)
\(\Rightarrow\left(x^2-2x+1+2\right)\left(x^2-4x+4+1\right)=-1\)
\(\Rightarrow\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(x-1\right)^2+2>0,\forall x\\\left(x-2\right)^2+1>0,\forall x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]>0,\forall x\\\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\end{matrix}\right.\) (vô lí)
Vậy phương trình trên vô nghiệm (dpcm)