Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =(8+a^3)(8-a^3)=64-a^6
2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x
=x^3-6x-8-x^3+x
=-5x-8
3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x
=2
\(A=\dfrac{6x}{5x-20}-\dfrac{x}{x^2-8x+16}\)
\(ĐKXĐ:x\ne\pm4\)
\(\Leftrightarrow A=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(\Leftrightarrow A=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{x\left(6x-29\right)}{5\left(x-4\right)^2}\)
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=\left(x^3+3x^2+3x+1\right)-\left(x^2+6x+9\right)\left(x+1\right)-4x^2+8\)
\(A=\left(x^3+3x^2+3x+1\right)-\left(x^3+x^2+6x^2+6x+9x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-x^2-6x^2-6x-9x-9+4x^2+8\)
\(A=-12x\)
Thay \(x=-\dfrac{1}{6}\) vào \(A\) ta có:
\(A=-12\times\left(-\dfrac{1}{6}\right)=2\)
Vậy \(A=2\) khi \(x=-\dfrac{1}{6}\)
\(B=\left(x-1\right)^3-+\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(B=\left(x^3-3x^2+3x-1\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)+\left(3x^2-48\right)\)
\(B=x^3-3x^2+3x-1-x^3+2x^2-4x-2x^2+4x-8+3x^2-48\)
\(B=3x-57\)
Thay \(x=-2\) vào \(B\) ta có:
\(B=3\times\left(-2\right)-57=-6-57=-63\)
Vậy \(B=-63\) khi \(x=-2\)
Bài 1:
a) \(x\left(x+1\right)+x\left(x-1\right)-2x^2\)
\(=x^2+x+x^2-x-2x^2\)
\(=2x^2-2x^2\)
\(=0\)
b) \(\left(x+2\right)\left(x^2-x+1\right)-\left(x-2\right)\left(x^2+x+1\right)\)
\(=x^3-x^2+x+2x^2-2x+2-x^3-x^2-x+2x^2+2x+2\)
\(=\left(x^3-x^3\right)+\left(-x^2+2x^2-x^2+2x^2\right)+\left(x-2x-x+2x\right)+\left(2+2\right)\)
\(=2x^2+4\)
c) \(\left(3-x\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left(x-3\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left[\left(x-3\right)+\left(x+7\right)\right]^2\)
\(=\left(x-3+x+7\right)^2\)
\(=\left(2x+4\right)^2\)
a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4