Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
`x : y : z= 3:4:5`
`=> x/3 = y/4 = z/5 <=> x^2/9 = y^2/16 = z^2/25`
Áp dụng dãy tỉ số bằng nhau:
`x^2/9 = y^2/16 = z^2/25 = (2x^2 + 2y^2 - 3z^2)/(18 + 32 - 75) = -100/-25 = 4`.
`=> {(x^2/9 = 4 => x = +-6), (y^2/16 =4 <=> x = +-8), (z^2/25 = 4 => z = +-10):}`
Vậy ...
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha
x : y : z = 3 : 4 : 5
=>x/3=y/4=z/5 => x2/9=y2/16=z2/5 = 2x2=2x2/18=2y2/32=3z2/75
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
suy ra 2x2/18=4 =>x2=36 =>x=6 ; x=-6
2y2/32=4 =>x2=128 => y=8 ; y=-8
3x2/75=4 =>z2=100 =>z=10 ;z=-10
a) Đặt: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2+3y^2-2z^2=-16\)
\(\Rightarrow\left(2k\right)^2+3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2=-16\)
\(\Rightarrow4k^2+3\cdot9k^2-2\cdot16k^2=-16\)
\(\Rightarrow4k^2+27k^2-32k^2=-16\)
\(\Rightarrow-k^2=-16\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
Với k = 4
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{3}=4\\\dfrac{z}{4}=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot4=8\\y=3\cdot4=12\\z=4\cdot4=16\end{matrix}\right.\)
Với k = -4
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-4=-8\\y=3\cdot-4=-12\\z=4\cdot-4=-16\end{matrix}\right.\)
Vậy: ...
b) Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Ta có: \(2x^2+2y^2-3z^2=-100\)
\(\Rightarrow2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)
\(\Rightarrow2\cdot9k^2+2\cdot16k^2-3\cdot25k^2=-100\)
\(\Rightarrow18k^2+32k^2-75k^2=-100\)
\(\Rightarrow-25k^2=-100\)
\(\Rightarrow k^2=-\dfrac{100}{-25}=4\)
\(\Rightarrow k=\pm2\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\\z=2\cdot5=10\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-2\\\dfrac{y}{4}=-2\\\dfrac{z}{5}=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-3=-6\\y=2\cdot-4=-8\\z=2\cdot-5=-10\end{matrix}\right.\)
Vậy: ...
<=>x/3=y/4=z/5
<=>x2/9=y2/16=z2/25
<=>2x2/18=2y2/32=3z2/75
Theo t/c dãy tỉ số=nhau:
2x2/18=2y2/32=3z2/75=(2x2+2y2-3z2)/(18+32-75)=-100/-25=100/25=4
=>2x2=4.18=72=>x2=36=>x E {-6;6}
2y2=4.32=144=>y2=64=>y E {-8;8}
3z2=4.75=300=>z2=100=>z E {-10;10}
KL:(x;y;z) E {(-6;-8;-10) ; (6;8;10)}
ta có: x:y:z=3:4:5\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2\left(3k\right)^2+2\left(4k\right)^2-3\left(5k\right)^2=-100\)
\(18k^2+32k^2-75k^2=-100\)
\(-25k^2=-100\)
\(k^2=-100:\left(-25\right)\)
\(k^2=4\Rightarrow k=+_{_-}2\)
*vs k=-2, có:x=-2.3=-6
y=-2.4=-8
z=-2.5=-10
*vs k=2. có:x=2.3=6
y=2.4=8
z=2.5=10
Giải:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Ta co: \(2x^2+2y^2-3z^2=-100\)
\(\Rightarrow18k^2+32k^2-75k^2=-100\)
\(\Rightarrow-25k^2=-100\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
+) \(k=2\Rightarrow x=6,y=8,z=10\)
+) \(k=-2\Rightarrow x=-6,y=-8,z=-10\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6;8;10\right);\left(-6;-8;-10\right)\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\) = \(\dfrac{2x^2+2y^2-3z^2}{18+32-75}\) = \(\dfrac{-100}{-25}\) = 4
=> \(\left\{{}\begin{matrix}2x^2=72\\2y^2=128\\3z^2=300\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x^2=36\\y^2=64\\z^2=100\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\pm6\\y=\pm8\\z=\pm10\end{matrix}\right.\)
Vì x,y,z cùng dấu => (x;y;z)= (6;8;10); (-6;-8;-10)