Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=xy+x^2y^2+x^3y^3+...+x^{100}y^{100}\)
\(\Rightarrow A=xy+\left(xy\right)^2+\left(xy\right)^3+...+\left(xy\right)^{100}\)
\(\Rightarrow A=\left(-1\right)+1+\left(-1\right)+...+1\) ( 100 số hạng )
\(\Rightarrow A=\left[\left(-1\right)+1\right]+\left[\left(-1\right)+1\right]+...+\left[\left(-1\right)+1\right]\) ( 50 cặp số )
\(\Rightarrow A=0\)
Vậy A = 0
a)Đặt k, ta có:
x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z
thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:
(2k)2+(3k)2+(5k)2=152
=>4xk2+9xk2+25xk2=152
=>k2x38=152
=>k2=4=>k=2 hoặc k=-2
Với k=2
=>x=4;y=6;z=10
Với k=-2
=>x=-4;y=-6;z=-10
Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)
b)Áp dụng dãy tỉ số bằng nhau, ta có :
x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2
=>x=8;y=14;z=18
Vậy........
`@` `\text {Ans}`
`\downarrow`
`x/3=y/4` và `x^2+y^2=100`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x^2+y^2}{3^2+4^2}=\dfrac{100}{25}=4\)
`=>`\(\dfrac{x}{3}=\dfrac{y}{4}=2\left(2^2=4\right)\) (đoạn này phải đổi đúng kq ra là 2, vì 4 là kết quả của tử và mẫu khi bình phương)
`=>`\(\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\end{matrix}\right.\)
Vậy, `x=6; y=8.`
Xem lại bài? Nếu chọn \(4\) là kết quả gốc thì bình phương phải là \(16\)? Vậy \(16\) đâu?